代码拉取完成,页面将自动刷新
/***************************************************************************
* nmap_dns.cc -- Handles parallel reverse DNS resolution for target IPs *
* *
***********************IMPORTANT NMAP LICENSE TERMS************************
* *
* The Nmap Security Scanner is (C) 1996-2019 Insecure.Com LLC ("The Nmap *
* Project"). Nmap is also a registered trademark of the Nmap Project. *
* This program is free software; you may redistribute and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; Version 2 ("GPL"), BUT ONLY WITH ALL OF THE *
* CLARIFICATIONS AND EXCEPTIONS DESCRIBED HEREIN. This guarantees your *
* right to use, modify, and redistribute this software under certain *
* conditions. If you wish to embed Nmap technology into proprietary *
* software, we sell alternative licenses (contact sales@nmap.com). *
* Dozens of software vendors already license Nmap technology such as *
* host discovery, port scanning, OS detection, version detection, and *
* the Nmap Scripting Engine. *
* *
* Note that the GPL places important restrictions on "derivative works", *
* yet it does not provide a detailed definition of that term. To avoid *
* misunderstandings, we interpret that term as broadly as copyright law *
* allows. For example, we consider an application to constitute a *
* derivative work for the purpose of this license if it does any of the *
* following with any software or content covered by this license *
* ("Covered Software"): *
* *
* o Integrates source code from Covered Software. *
* *
* o Reads or includes copyrighted data files, such as Nmap's nmap-os-db *
* or nmap-service-probes. *
* *
* o Is designed specifically to execute Covered Software and parse the *
* results (as opposed to typical shell or execution-menu apps, which will *
* execute anything you tell them to). *
* *
* o Includes Covered Software in a proprietary executable installer. The *
* installers produced by InstallShield are an example of this. Including *
* Nmap with other software in compressed or archival form does not *
* trigger this provision, provided appropriate open source decompression *
* or de-archiving software is widely available for no charge. For the *
* purposes of this license, an installer is considered to include Covered *
* Software even if it actually retrieves a copy of Covered Software from *
* another source during runtime (such as by downloading it from the *
* Internet). *
* *
* o Links (statically or dynamically) to a library which does any of the *
* above. *
* *
* o Executes a helper program, module, or script to do any of the above. *
* *
* This list is not exclusive, but is meant to clarify our interpretation *
* of derived works with some common examples. Other people may interpret *
* the plain GPL differently, so we consider this a special exception to *
* the GPL that we apply to Covered Software. Works which meet any of *
* these conditions must conform to all of the terms of this license, *
* particularly including the GPL Section 3 requirements of providing *
* source code and allowing free redistribution of the work as a whole. *
* *
* As another special exception to the GPL terms, the Nmap Project grants *
* permission to link the code of this program with any version of the *
* OpenSSL library which is distributed under a license identical to that *
* listed in the included docs/licenses/OpenSSL.txt file, and distribute *
* linked combinations including the two. *
* *
* The Nmap Project has permission to redistribute Npcap, a packet *
* capturing driver and library for the Microsoft Windows platform. *
* Npcap is a separate work with it's own license rather than this Nmap *
* license. Since the Npcap license does not permit redistribution *
* without special permission, our Nmap Windows binary packages which *
* contain Npcap may not be redistributed without special permission. *
* *
* Any redistribution of Covered Software, including any derived works, *
* must obey and carry forward all of the terms of this license, including *
* obeying all GPL rules and restrictions. For example, source code of *
* the whole work must be provided and free redistribution must be *
* allowed. All GPL references to "this License", are to be treated as *
* including the terms and conditions of this license text as well. *
* *
* Because this license imposes special exceptions to the GPL, Covered *
* Work may not be combined (even as part of a larger work) with plain GPL *
* software. The terms, conditions, and exceptions of this license must *
* be included as well. This license is incompatible with some other open *
* source licenses as well. In some cases we can relicense portions of *
* Nmap or grant special permissions to use it in other open source *
* software. Please contact fyodor@nmap.org with any such requests. *
* Similarly, we don't incorporate incompatible open source software into *
* Covered Software without special permission from the copyright holders. *
* *
* If you have any questions about the licensing restrictions on using *
* Nmap in other works, we are happy to help. As mentioned above, we also *
* offer an alternative license to integrate Nmap into proprietary *
* applications and appliances. These contracts have been sold to dozens *
* of software vendors, and generally include a perpetual license as well *
* as providing support and updates. They also fund the continued *
* development of Nmap. Please email sales@nmap.com for further *
* information. *
* *
* If you have received a written license agreement or contract for *
* Covered Software stating terms other than these, you may choose to use *
* and redistribute Covered Software under those terms instead of these. *
* *
* Source is provided to this software because we believe users have a *
* right to know exactly what a program is going to do before they run it. *
* This also allows you to audit the software for security holes. *
* *
* Source code also allows you to port Nmap to new platforms, fix bugs, *
* and add new features. You are highly encouraged to send your changes *
* to the dev@nmap.org mailing list for possible incorporation into the *
* main distribution. By sending these changes to Fyodor or one of the *
* Insecure.Org development mailing lists, or checking them into the Nmap *
* source code repository, it is understood (unless you specify *
* otherwise) that you are offering the Nmap Project the unlimited, *
* non-exclusive right to reuse, modify, and relicense the code. Nmap *
* will always be available Open Source, but this is important because *
* the inability to relicense code has caused devastating problems for *
* other Free Software projects (such as KDE and NASM). We also *
* occasionally relicense the code to third parties as discussed above. *
* If you wish to specify special license conditions of your *
* contributions, just say so when you send them. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Nmap *
* license file for more details (it's in a COPYING file included with *
* Nmap, and also available from https://svn.nmap.org/nmap/COPYING) *
* *
***************************************************************************/
// mass_rdns - Parallel Asynchronous Reverse DNS Resolution
//
// One of Nmap's features is to perform reverse DNS queries
// on large number of IP addresses. Nmap supports 2 different
// methods of accomplishing this:
//
// System Resolver (specified using --system-dns):
// Performs sequential getnameinfo() calls on all the IPs.
// As reliable as your system resolver, almost guaranteed
// to be portable, but intolerably slow for scans of hundreds
// or more because the result from each query needs to be
// received before the next one can be sent.
//
// Mass/Async DNS (default):
// Attempts to resolve host names in parallel using a set
// of DNS servers. DNS servers are found here:
//
// --dns-servers <serv1[,serv2],...> (all platforms - overrides everything else)
//
// /etc/resolv.conf (only on unix)
//
// These registry keys: (only on windows)
//
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\NameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\DhcpNameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\*\NameServer
// HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\*\DhcpNameServer
//
//
// Also, most systems maintain a file "/etc/hosts" that contains
// IP to hostname mappings. We also try to consult these files. Here
// is where we look for the files:
//
// Unix: /etc/hosts
//
// Windows:
// for 95/98/Me: WINDOWS_DIR\hosts
// for NT/2000/XP Pro: WINDOWS_DIR\system32\drivers\etc\hosts
// for XP Home: WINDOWS_DIR\system32\drivers\etc\hosts
// --see http://accs-net.com/hosts/how_to_use_hosts.html
//
//
// Created by Doug Hoyte <doug at hcsw.org> http://www.hcsw.org
// DNS Caching and aging added by Eddie Bell ejlbell@gmail.com 2007
// IPv6 and improved DNS cache by Gioacchino Mazzurco <gmazzurco89@gmail.com> 2015
// TODO:
//
// * Tune performance parameters
//
// * Figure out best way to estimate completion time
// and display it in a ScanProgressMeter
#ifdef WIN32
#include "nmap_winconfig.h"
/* Need DnetName2PcapName */
#include "libnetutil/netutil.h"
#endif
#include "nmap.h"
#include "NmapOps.h"
#include "nmap_dns.h"
#include "nsock.h"
#include "nmap_error.h"
#include "nmap_tty.h"
#include "tcpip.h"
#include "timing.h"
#include "Target.h"
#include <stdlib.h>
#include <limits.h>
#include <list>
#include <vector>
extern NmapOps o;
//------------------- Performance Parameters ---------------------
// Algorithm:
//
// A batch of num_targets hosts is passed to nmap_mass_rdns():
// void nmap_mass_rdns(Target **targets, int num_targets)
//
// mass_dns sends out CAPACITY_MIN of these hosts to the DNS
// servers detected, alternating in sequence.
// When a request is fulfilled (either a resolved domain, NXDomain,
// or confirmed ServFail) CAPACITY_UP_STEP is added to the current
// capacity of the server the request was found by.
// When a request times out and retries on the same server,
// the server's capacity is scaled by CAPACITY_MINOR_DOWN_STEP.
// When a request times out and moves to the next server in
// sequence, the server's capacity is scaled by CAPACITY_MAJOR_DOWN_STEP.
// mass_dns tries to maintain the current number of "outstanding
// queries" on each server to that of its current capacity. The
// packet is dropped if it cycles through all specified DNS
// servers.
// Since multiple DNS servers can be specified, different sequences
// of timers are maintained. These are the various retransmission
// intervals for each server before we move on to the next DNS server:
// In milliseconds
// Each row MUST be terminated with -1
static int read_timeouts[][4] = {
{ 4000, 4000, 5000, -1 }, // 1 server
{ 2500, 4000, -1, -1 }, // 2 servers
{ 2500, 3000, -1, -1 }, // 3+ servers
};
#define CAPACITY_MIN 10
#define CAPACITY_MAX 200
#define CAPACITY_UP_STEP 2
#define CAPACITY_MINOR_DOWN_SCALE 0.9
#define CAPACITY_MAJOR_DOWN_SCALE 0.7
// Each request will try to resolve on at most this many servers:
#define SERVERS_TO_TRY 3
//------------------- Other Parameters ---------------------
// How often to display a short debugging summary if debugging is
// specified. Lower numbers means it's displayed more often.
#define SUMMARY_DELAY 50
// Minimum debugging level to display packet trace
#define TRACE_DEBUG_LEVEL 4
// The amount of time we wait for nsock_write() to complete before
// retransmission. This should almost never happen. (in milliseconds)
#define WRITE_TIMEOUT 100
//------------------- Internal Structures ---------------------
struct dns_server;
struct request;
typedef struct sockaddr_storage sockaddr_storage;
struct dns_server {
std::string hostname;
sockaddr_storage addr;
size_t addr_len;
nsock_iod nsd;
int connected;
int reqs_on_wire;
int capacity;
int write_busy;
std::list<request *> to_process;
std::list<request *> in_process;
};
struct request {
Target *targ;
struct timeval timeout;
int tries;
int servers_tried;
dns_server *first_server;
dns_server *curr_server;
u16 id;
};
/*keeps record of a request going through a particular DNS server
helps in attaining faster lookup based on ID */
struct info{
dns_server *server;
request *tpreq;
};
class HostElem
{
public:
HostElem(const std::string & name_, const sockaddr_storage & ip) :
name(name_), addr(ip), cache_hits(0) {}
~HostElem() {}
/* Ages entries and return true with a cache hit of 0 (the least used) */
static bool isTimeToClean(HostElem he)
{
if(he.cache_hits)
{
he.cache_hits >>= 1;
return false;
}
return true;
}
const std::string name;
const sockaddr_storage addr;
u8 cache_hits;
};
class HostCacheLine : public std::list<HostElem>{};
class HostCache
{
public:
// TODO: avoid hardcode this constant
HostCache() : lines_count(256), hash_mask(lines_count-1),
hosts_storage(new HostCacheLine[lines_count]), elements_count(0)
{}
~HostCache()
{
delete[] hosts_storage;
}
u32 hash(sockaddr_storage ip)
{
u32 ret = 0;
switch (ip.ss_family)
{
case AF_INET:
{
u8 * ipv4 = (u8 *) &((const struct sockaddr_in *) &ip)->sin_addr;
// Shuffle bytes a little so we avoid awful performances in commons
// usages patterns like 10.0.1-255.1 and lines_count 256
ret = ipv4[0] + (ipv4[1]<<3) + (ipv4[2]<<5) + (ipv4[3]<<7);
break;
}
case AF_INET6:
{
const struct sockaddr_in6 * sa6 = (const struct sockaddr_in6 *) &ip;
u32 * ipv6 = (u32 *) sa6->sin6_addr.s6_addr;
ret = ipv6[0] + ipv6[1] + ipv6[2] + ipv6[3];
break;
}
}
return ret & hash_mask;
}
/* Add to the dns cache. If there are too many entries
* we age and remove the least frequently used ones to
* make more space. */
bool add( const sockaddr_storage & ip, const std::string & hname)
{
std::string discard;
if(lookup(ip, discard)) return false;
if(elements_count >= lines_count) prune();
HostElem he(hname, ip);
hosts_storage[hash(ip)].push_back(he);
++elements_count;
return true;
}
u32 prune()
{
u32 original_count = elements_count;
for(u32 i = 0; i < lines_count; ++i)
{
std::list<HostElem>::iterator it = find_if(hosts_storage[i].begin(),
hosts_storage[i].end(),
HostElem::isTimeToClean);
while ( it != hosts_storage[i].end() )
{
it = hosts_storage[i].erase(it);
assert(elements_count > 0);
--elements_count;
}
}
return original_count - elements_count;
}
/* Search for a hostname in the cache and increment
* its cache hit counter if found */
bool lookup(const sockaddr_storage & ip, std::string & name)
{
std::list<HostElem>::iterator hostI;
u32 ip_hash = hash(ip);
for( hostI = hosts_storage[ip_hash].begin();
hostI != hosts_storage[ip_hash].end();
++hostI)
{
if (sockaddr_storage_equal(&hostI->addr, &ip))
{
if(hostI->cache_hits < UCHAR_MAX)
hostI->cache_hits++;
name = hostI->name;
return true;
}
}
return false;
}
protected:
const u32 lines_count;
const u32 hash_mask;
HostCacheLine * const hosts_storage;
u32 elements_count;
};
//------------------- Globals ---------------------
u16 DNS::Factory::progressiveId = get_random_u16();
static std::list<dns_server> servs;
static std::list<request *> new_reqs;
static std::list<request *> deferred_reqs;
static std::map<u16, info> records;
static int total_reqs;
static nsock_pool dnspool=NULL;
/* The DNS cache, not just for entries from /etc/hosts. */
static HostCache host_cache;
static int stat_actual, stat_ok, stat_nx, stat_sf, stat_trans, stat_dropped, stat_cname;
static struct timeval starttv;
static int read_timeout_index;
static int firstrun=1;
static ScanProgressMeter *SPM;
//------------------- Prototypes and macros ---------------------
static void read_evt_handler(nsock_pool, nsock_event, void *);
static void put_dns_packet_on_wire(request *req);
#define ACTION_FINISHED 0
#define ACTION_SYSTEM_RESOLVE 1
#define ACTION_TIMEOUT 2
//------------------- Misc code ---------------------
static void output_summary() {
int tp = stat_ok + stat_nx + stat_dropped;
struct timeval now;
memcpy(&now, nsock_gettimeofday(), sizeof(struct timeval));
if (o.debugging && (tp%SUMMARY_DELAY == 0))
log_write(LOG_STDOUT, "mass_rdns: %.2fs %d/%d [#: %lu, OK: %d, NX: %d, DR: %d, SF: %d, TR: %d]\n",
TIMEVAL_MSEC_SUBTRACT(now, starttv) / 1000.0,
tp, stat_actual,
(unsigned long) servs.size(), stat_ok, stat_nx, stat_dropped, stat_sf, stat_trans);
}
static void check_capacities(dns_server *tpserv) {
if (tpserv->capacity < CAPACITY_MIN) tpserv->capacity = CAPACITY_MIN;
if (tpserv->capacity > CAPACITY_MAX) tpserv->capacity = CAPACITY_MAX;
if (o.debugging >= TRACE_DEBUG_LEVEL) log_write(LOG_STDOUT, "CAPACITY <%s> = %d\n", tpserv->hostname.c_str(), tpserv->capacity);
}
// Closes all nsis created in connect_dns_servers()
static void close_dns_servers() {
std::list<dns_server>::iterator serverI;
for(serverI = servs.begin(); serverI != servs.end(); serverI++) {
if (serverI->connected) {
nsock_iod_delete(serverI->nsd, NSOCK_PENDING_SILENT);
serverI->connected = 0;
serverI->to_process.clear();
serverI->in_process.clear();
}
}
}
// Puts as many packets on the line as capacity will allow
static void do_possible_writes() {
std::list<dns_server>::iterator servI;
request *tpreq;
for(servI = servs.begin(); servI != servs.end(); servI++) {
if (servI->write_busy == 0 && servI->reqs_on_wire < servI->capacity) {
tpreq = NULL;
if (!servI->to_process.empty()) {
tpreq = servI->to_process.front();
servI->to_process.pop_front();
} else if (!new_reqs.empty()) {
tpreq = new_reqs.front();
assert(tpreq != NULL);
tpreq->first_server = tpreq->curr_server = &*servI;
new_reqs.pop_front();
}
if (tpreq) {
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_rdns: TRANSMITTING for <%s> (server <%s>)\n", tpreq->targ->targetipstr() , servI->hostname.c_str());
stat_trans++;
put_dns_packet_on_wire(tpreq);
}
}
}
}
// nsock write handler
static void write_evt_handler(nsock_pool nsp, nsock_event evt, void *req_v) {
info record;
request *req = (request *) req_v;
req->curr_server->write_busy = 0;
req->curr_server->in_process.push_front(req);
record.tpreq = req;
record.server = req->curr_server;
records[req->id] = record;
do_possible_writes();
}
// Takes a DNS request structure and actually puts it on the wire
// (calls nsock_write()). Does various other tasks like recording
// the time for the timeout.
static void put_dns_packet_on_wire(request *req) {
const size_t maxlen = 512;
u8 packet[maxlen];
size_t plen=0;
struct timeval now, timeout;
req->id = DNS::Factory::progressiveId;
req->curr_server->write_busy = 1;
req->curr_server->reqs_on_wire++;
plen = DNS::Factory::buildReverseRequest(*req->targ->TargetSockAddr(), packet, maxlen);
memcpy(&now, nsock_gettimeofday(), sizeof(struct timeval));
TIMEVAL_MSEC_ADD(timeout, now, read_timeouts[read_timeout_index][req->tries]);
memcpy(&req->timeout, &timeout, sizeof(struct timeval));
req->tries++;
nsock_write(dnspool, req->curr_server->nsd, write_evt_handler, WRITE_TIMEOUT, req, reinterpret_cast<const char *>(packet), plen);
}
// Processes DNS packets that have timed out
// Returns time until next read timeout
static int deal_with_timedout_reads() {
std::list<dns_server>::iterator servI;
std::list<dns_server>::iterator servItemp;
std::list<request *>::iterator reqI;
std::list<request *>::iterator nextI;
std::map<u16, info>::iterator infoI;
request *tpreq;
struct timeval now;
int tp, min_timeout = INT_MAX;
memcpy(&now, nsock_gettimeofday(), sizeof(struct timeval));
if (keyWasPressed())
SPM->printStats((double) (stat_ok + stat_nx + stat_dropped) / stat_actual, &now);
for(servI = servs.begin(); servI != servs.end(); servI++) {
nextI = servI->in_process.begin();
if (nextI == servI->in_process.end()) continue;
do {
reqI = nextI++;
tpreq = *reqI;
tp = TIMEVAL_MSEC_SUBTRACT(tpreq->timeout, now);
if (tp > 0 && tp < min_timeout) min_timeout = tp;
if (tp <= 0) {
servI->capacity = (int) (servI->capacity * CAPACITY_MINOR_DOWN_SCALE);
check_capacities(&*servI);
servI->in_process.erase(reqI);
std::map<u16, info>::iterator it = records.find(tpreq->id);
if ( it != records.end() )
records.erase(it);
servI->reqs_on_wire--;
// If we've tried this server enough times, move to the next one
if (read_timeouts[read_timeout_index][tpreq->tries] == -1) {
servI->capacity = (int) (servI->capacity * CAPACITY_MAJOR_DOWN_SCALE);
check_capacities(&*servI);
servItemp = servI;
servItemp++;
if (servItemp == servs.end()) servItemp = servs.begin();
tpreq->curr_server = &*servItemp;
tpreq->tries = 0;
tpreq->servers_tried++;
if (tpreq->curr_server == tpreq->first_server || tpreq->servers_tried == SERVERS_TO_TRY) {
// Either give up on the IP
// or, for maximum reliability, put the server back into processing
// Note it's possible that this will never terminate.
// FIXME: Find a good compromise
// **** We've already tried all servers... give up
if (o.debugging >= TRACE_DEBUG_LEVEL) log_write(LOG_STDOUT, "mass_rdns: *DR*OPPING <%s>\n", tpreq->targ->targetipstr());
output_summary();
stat_dropped++;
total_reqs--;
infoI = records.find(tpreq->id);
if ( infoI != records.end() )
records.erase(infoI);
delete tpreq;
// **** OR We start at the back of this server's queue
//servItemp->to_process.push_back(tpreq);
} else {
servItemp->to_process.push_back(tpreq);
}
} else {
servI->to_process.push_back(tpreq);
}
}
} while (nextI != servI->in_process.end());
}
if (min_timeout > 500) return 500;
else return min_timeout;
}
// After processing a DNS response, we search through the IPs we're
// looking for and update their results as necessary.
// Returns non-zero if this matches a query we're looking for
static int process_result(const sockaddr_storage &ip, const std::string &result, int action, u16 id)
{
request *tpreq;
std::map<u16, info>::iterator infoI;
dns_server *server;
infoI = records.find(id);
if( infoI != records.end() ){
tpreq = infoI->second.tpreq;
server = infoI->second.server;
if( !result.empty() && !sockaddr_storage_equal(&ip, tpreq->targ->TargetSockAddr()) )
return 0;
if (action == ACTION_SYSTEM_RESOLVE || action == ACTION_FINISHED)
{
server->capacity += CAPACITY_UP_STEP;
check_capacities(&*server);
if(!result.empty())
{
tpreq->targ->setHostName(result.c_str());
host_cache.add(* tpreq->targ->TargetSockAddr(), result);
}
records.erase(infoI);
server->in_process.remove(tpreq);
server->reqs_on_wire--;
total_reqs--;
if (action == ACTION_SYSTEM_RESOLVE) deferred_reqs.push_back(tpreq);
if (action == ACTION_FINISHED) delete tpreq;
}
else
{
memcpy(&tpreq->timeout, nsock_gettimeofday(), sizeof(struct timeval));
deal_with_timedout_reads();
}
do_possible_writes();
// Close DNS servers if we're all done so that we kill
// all events and return from nsock_loop immediateley
if (total_reqs == 0)
close_dns_servers();
return 1;
}
return 0;
}
// Nsock read handler. One nsock read for each DNS server exists at each
// time. This function uses various helper functions as defined above.
static void read_evt_handler(nsock_pool nsp, nsock_event evt, void *) {
u8 *buf;
int buflen;
if (total_reqs >= 1)
nsock_read(nsp, nse_iod(evt), read_evt_handler, -1, NULL);
if (nse_type(evt) != NSE_TYPE_READ || nse_status(evt) != NSE_STATUS_SUCCESS) {
if (o.debugging)
log_write(LOG_STDOUT, "mass_dns: warning: got a %s:%s in %s()\n",
nse_type2str(nse_type(evt)),
nse_status2str(nse_status(evt)), __func__);
return;
}
buf = (unsigned char *) nse_readbuf(evt, &buflen);
DNS::Packet p;
size_t readed_bytes = p.parseFromBuffer(buf, buflen);
if(readed_bytes < DNS::DATA) return;
// We should have 1+ queries:
u16 &f = p.flags;
if(p.queries.empty() || !DNS_HAS_FLAG(f, DNS::RESPONSE) ||
!DNS_HAS_FLAG(f, DNS::OP_STANDARD_QUERY) ||
(f & DNS::ZERO) || DNS_HAS_ERR(f, DNS::ERR_FORMAT) ||
DNS_HAS_ERR(f, DNS::ERR_NOT_IMPLEMENTED) || DNS_HAS_ERR(f, DNS::ERR_REFUSED))
return;
if (DNS_HAS_ERR(f, DNS::ERR_NAME))
{
sockaddr_storage discard;
if(process_result(discard, "", ACTION_FINISHED, p.id))
{
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_rdns: NXDOMAIN <id = %d>\n", p.id);
output_summary();
stat_nx++;
}
return;
}
if (DNS_HAS_ERR(f, DNS::ERR_SERVFAIL))
{
sockaddr_storage discard;
if (process_result(discard, "", ACTION_TIMEOUT, p.id))
{
if (o.debugging >= TRACE_DEBUG_LEVEL)
log_write(LOG_STDOUT, "mass_rdns: SERVFAIL <id = %d>\n", p.id);
stat_sf++;
}
return;
}
bool processing_successful = false;
sockaddr_storage ip;
ip.ss_family = AF_UNSPEC;
std::string alias;
for(std::list<DNS::Answer>::const_iterator it = p.answers.begin();
it != p.answers.end() && !processing_successful; ++it )
{
const DNS::Answer &a = *it;
if(a.record_class == DNS::CLASS_IN)
{
switch(a.record_type)
{
case DNS::PTR:
{
DNS::PTR_Record * ptr = static_cast<DNS::PTR_Record *>(a.record);
if(
// If CNAME answer filled in ip with a matching alias
(ip.ss_family != AF_UNSPEC && a.name == alias )
// Or if we can get an IP from reversing the .arpa PTR address
|| DNS::Factory::ptrToIp(a.name, ip))
{
if ((processing_successful = process_result(ip, ptr->value, ACTION_FINISHED, p.id)))
{
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
char ipstr[INET6_ADDRSTRLEN];
sockaddr_storage_iptop(&ip, ipstr);
log_write(LOG_STDOUT, "mass_rdns: OK MATCHED <%s> to <%s>\n",
ipstr,
ptr->value.c_str());
}
output_summary();
stat_ok++;
}
}
break;
}
case DNS::CNAME:
{
if(DNS::Factory::ptrToIp(a.name, ip))
{
DNS::CNAME_Record * cname = static_cast<DNS::CNAME_Record *>(a.record);
alias = cname->value;
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
char ipstr[INET6_ADDRSTRLEN];
sockaddr_storage_iptop(&ip, ipstr);
log_write(LOG_STDOUT, "mass_rdns: CNAME found for <%s> to <%s>\n", ipstr, alias.c_str());
}
}
break;
}
default:
break;
}
}
}
if (!processing_successful) {
if (DNS_HAS_FLAG(f, DNS::TRUNCATED)) {
// TODO: TCP fallback, or only use system resolver if user didn't specify --dns-servers
process_result(ip, "", ACTION_SYSTEM_RESOLVE, p.id);
}
else if (!alias.empty()) {
if (o.debugging >= TRACE_DEBUG_LEVEL)
{
char ipstr[INET6_ADDRSTRLEN];
sockaddr_storage_iptop(&ip, ipstr);
log_write(LOG_STDOUT, "mass_rdns: CNAME for <%s> not processed.\n", ipstr);
}
// TODO: Send a PTR request for alias instead. Meanwhile, we'll just fall
// back to using system resolver. Alternative: report the canonical name
// (alias), but that's not very useful.
process_result(ip, "", ACTION_SYSTEM_RESOLVE, p.id);
}
else {
if (o.debugging >= TRACE_DEBUG_LEVEL) {
log_write(LOG_STDOUT, "mass_rdns: Unable to process the response\n");
}
}
}
}
// nsock connect handler - Empty because it doesn't really need to do anything...
static void connect_evt_handler(nsock_pool, nsock_event, void *) {}
// Adds DNS servers to the dns_server list. They can be separated by
// commas or spaces - NOTE this doesn't actually do any connecting!
static void add_dns_server(char *ipaddrs) {
std::list<dns_server>::iterator servI;
char *hostname;
struct sockaddr_storage addr;
size_t addr_len = sizeof(addr);
for (hostname = strtok(ipaddrs, " ,"); hostname != NULL; hostname = strtok(NULL, " ,")) {
if (resolve(hostname, 0, (struct sockaddr_storage *) &addr, &addr_len,
o.spoofsource ? o.af() : PF_UNSPEC) != 0)
continue;
for(servI = servs.begin(); servI != servs.end(); servI++) {
// Already added!
if (memcmp(&addr, &servI->addr, sizeof(addr)) == 0) break;
}
// If it hasn't already been added, add it!
if (servI == servs.end()) {
dns_server tpserv;
tpserv.hostname = hostname;
memcpy(&tpserv.addr, &addr, sizeof(addr));
tpserv.addr_len = addr_len;
servs.push_front(tpserv);
if (o.debugging) log_write(LOG_STDOUT, "mass_rdns: Using DNS server %s\n", hostname);
}
}
}
// Creates a new nsi for each DNS server
static void connect_dns_servers() {
std::list<dns_server>::iterator serverI;
for(serverI = servs.begin(); serverI != servs.end(); serverI++) {
serverI->nsd = nsock_iod_new(dnspool, NULL);
if (o.spoofsource) {
struct sockaddr_storage ss;
size_t sslen;
o.SourceSockAddr(&ss, &sslen);
nsock_iod_set_localaddr(serverI->nsd, &ss, sslen);
}
if (o.ipoptionslen)
nsock_iod_set_ipoptions(serverI->nsd, o.ipoptions, o.ipoptionslen);
serverI->reqs_on_wire = 0;
serverI->capacity = CAPACITY_MIN;
serverI->write_busy = 0;
nsock_connect_udp(dnspool, serverI->nsd, connect_evt_handler, NULL, (struct sockaddr *) &serverI->addr, serverI->addr_len, 53);
nsock_read(dnspool, serverI->nsd, read_evt_handler, -1, NULL);
serverI->connected = 1;
}
}
#ifdef WIN32
static bool interface_is_known_by_guid(const char *guid) {
struct interface_info *iflist;
int i, n;
iflist = getinterfaces(&n, NULL, 0);
if (iflist == NULL)
return false;
for (i = 0; i < n; i++) {
char pcap_name[1024];
char *pcap_guid;
if (!DnetName2PcapName(iflist[i].devname, pcap_name, sizeof(pcap_name)))
continue;
pcap_guid = strchr(pcap_name, '{');
if (pcap_guid == NULL)
continue;
if (strcasecmp(guid, pcap_guid) == 0)
return true;
}
return false;
}
// Reads the Windows registry and adds all the nameservers found via the
// add_dns_server() function.
void win32_read_registry() {
HKEY hKey;
HKEY hKey2;
char keybasebuf[2048];
char buf[2048], keyname[2048], *p;
DWORD sz, i;
Snprintf(keybasebuf, sizeof(keybasebuf), "SYSTEM\\CurrentControlSet\\Services\\Tcpip\\Parameters");
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keybasebuf,
0, KEY_READ, &hKey) != ERROR_SUCCESS) {
if (firstrun) error("mass_dns: warning: Error opening registry to read DNS servers. Try using --system-dns or specify valid servers with --dns-servers");
return;
}
sz = sizeof(buf);
if (RegQueryValueEx(hKey, "NameServer", NULL, NULL, (LPBYTE) buf, (LPDWORD) &sz) == ERROR_SUCCESS)
add_dns_server(buf);
sz = sizeof(buf);
if (RegQueryValueEx(hKey, "DhcpNameServer", NULL, NULL, (LPBYTE) buf, (LPDWORD) &sz) == ERROR_SUCCESS)
add_dns_server(buf);
RegCloseKey(hKey);
Snprintf(keybasebuf, sizeof(keybasebuf), "SYSTEM\\CurrentControlSet\\Services\\Tcpip\\Parameters\\Interfaces");
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keybasebuf,
0, KEY_ENUMERATE_SUB_KEYS, &hKey) == ERROR_SUCCESS) {
for (i=0; sz = sizeof(buf), RegEnumKeyEx(hKey, i, buf, &sz, NULL, NULL, NULL, NULL) != ERROR_NO_MORE_ITEMS; i++) {
// If we don't have pcap, interface_is_known_by_guid will crash. Just use any servers we can find.
if (o.have_pcap && !interface_is_known_by_guid(buf)) {
if (o.debugging > 1)
log_write(LOG_PLAIN, "Interface %s is not known; ignoring its nameservers.\n", buf);
continue;
}
Snprintf(keyname, sizeof(keyname), "SYSTEM\\CurrentControlSet\\Services\\Tcpip\\Parameters\\Interfaces\\%s", buf);
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keyname,
0, KEY_READ, &hKey2) == ERROR_SUCCESS) {
sz = sizeof(buf);
if (RegQueryValueEx(hKey2, "DhcpNameServer", NULL, NULL, (LPBYTE) buf, (LPDWORD) &sz) == ERROR_SUCCESS)
add_dns_server(buf);
sz = sizeof(buf);
if (RegQueryValueEx(hKey2, "NameServer", NULL, NULL, (LPBYTE) buf, (LPDWORD) &sz) == ERROR_SUCCESS)
add_dns_server(buf);
RegCloseKey(hKey2);
}
}
RegCloseKey(hKey);
}
}
#endif // WIN32
// Parses /etc/resolv.conf (unix) and adds all the nameservers found via the
// add_dns_server() function.
static void parse_resolvdotconf() {
FILE *fp;
char buf[2048], *tp;
char fmt[32];
char ipaddr[INET6_ADDRSTRLEN+1];
fp = fopen("/etc/resolv.conf", "r");
if (fp == NULL) {
if (firstrun) error("mass_dns: warning: Unable to open /etc/resolv.conf. Try using --system-dns or specify valid servers with --dns-servers");
return;
}
Snprintf(fmt, sizeof(fmt), "nameserver %%%us", INET6_ADDRSTRLEN);
while (fgets(buf, sizeof(buf), fp)) {
tp = buf;
// Clip off comments #, \r, \n
while (*tp != '\r' && *tp != '\n' && *tp != '#' && *tp) tp++;
*tp = '\0';
tp = buf;
// Skip any leading whitespace
while (*tp == ' ' || *tp == '\t') tp++;
if (sscanf(tp, fmt, ipaddr) == 1) add_dns_server(ipaddr);
}
fclose(fp);
}
static void parse_etchosts(const char *fname) {
FILE *fp;
char buf[2048], hname[256], ipaddrstr[INET6_ADDRSTRLEN+1], *tp;
sockaddr_storage ia;
fp = fopen(fname, "r");
if (fp == NULL) return; // silently is OK
while (fgets(buf, sizeof(buf), fp)) {
tp = buf;
// Clip off comments #, \r, \n
while (*tp != '\r' && *tp != '\n' && *tp != '#' && *tp) tp++;
*tp = '\0';
tp = buf;
// Skip any leading whitespace
while (*tp == ' ' || *tp == '\t') tp++;
std::stringstream pattern;
pattern << "%" << INET6_ADDRSTRLEN << "s %255s";
if (sscanf(tp, pattern.str().c_str(), ipaddrstr, hname) == 2)
if (sockaddr_storage_inet_pton(ipaddrstr, &ia))
{
const std::string hname_ = hname;
host_cache.add(ia, hname_);
}
}
fclose(fp);
}
static void etchosts_init(void) {
static int initialized = 0;
if (initialized) return;
initialized = 1;
#ifdef WIN32
char windows_dir[1024];
char tpbuf[2048];
int has_backslash;
if (!GetWindowsDirectory(windows_dir, sizeof(windows_dir)))
fatal("Failed to determine your windows directory");
// If it has a backslash it's C:\, otherwise something like C:\WINNT
has_backslash = (windows_dir[strlen(windows_dir)-1] == '\\');
// Windows 95/98/Me:
Snprintf(tpbuf, sizeof(tpbuf), "%s%shosts", windows_dir, has_backslash ? "" : "\\");
parse_etchosts(tpbuf);
// Windows NT/2000/XP/2K3:
Snprintf(tpbuf, sizeof(tpbuf), "%s%ssystem32\\drivers\\etc\\hosts", windows_dir, has_backslash ? "" : "\\");
parse_etchosts(tpbuf);
#else
parse_etchosts("/etc/hosts");
#endif // WIN32
}
/* Initialize the global servs list of DNS servers. If the --dns-servers option
* was given, use the listed servers; otherwise get the list from resolv.conf or
* the Windows registry. If o.mass_dns is false, the list of servers is empty.
* This function caches the results from the first time it is run. */
static void init_servs(void) {
static bool initialized = false;
if (initialized)
return;
initialized = true;
if (!o.mass_dns)
return;
if (o.dns_servers) {
add_dns_server(o.dns_servers);
} else {
#ifndef WIN32
parse_resolvdotconf();
#else
win32_read_registry();
#endif
}
}
//------------------- Main loops ---------------------
// Actual main loop
static void nmap_mass_rdns_core(Target **targets, int num_targets) {
Target **hostI;
std::list<request *>::iterator reqI;
request *tpreq;
int timeout;
const char *tpname;
int i;
char spmobuf[1024];
// If necessary, set up the dns server list
init_servs();
if (servs.size() == 0 && firstrun) error("mass_dns: warning: Unable to "
"determine any DNS servers. Reverse"
" DNS is disabled. Try using "
"--system-dns or specify valid "
"servers with --dns-servers");
// If necessary, read /etc/hosts and put entries into the hashtable
etchosts_init();
total_reqs = 0;
// Set up the request structure
for(hostI = targets; hostI < targets+num_targets; hostI++)
{
if (!((*hostI)->flags & HOST_UP) && !o.always_resolve) continue;
// See if it's cached
std::string res;
if (host_cache.lookup(*(*hostI)->TargetSockAddr(), res)) {
tpname = res.c_str();
(*hostI)->setHostName(tpname);
continue;
}
tpreq = new request;
tpreq->targ = *hostI;
tpreq->tries = 0;
tpreq->servers_tried = 0;
new_reqs.push_back(tpreq);
stat_actual++;
total_reqs++;
}
if (total_reqs == 0 || servs.size() == 0) return;
// And finally, do it!
if ((dnspool = nsock_pool_new(NULL)) == NULL)
fatal("Unable to create nsock pool in %s()", __func__);
nmap_set_nsock_logger();
nmap_adjust_loglevel(o.packetTrace());
nsock_pool_set_device(dnspool, o.device);
if (o.proxy_chain)
nsock_pool_set_proxychain(dnspool, o.proxy_chain);
connect_dns_servers();
deferred_reqs.clear();
read_timeout_index = MIN(sizeof(read_timeouts)/sizeof(read_timeouts[0]), servs.size()) - 1;
Snprintf(spmobuf, sizeof(spmobuf), "Parallel DNS resolution of %d host%s.", stat_actual, stat_actual-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
while (total_reqs > 0) {
timeout = deal_with_timedout_reads();
do_possible_writes();
if (total_reqs <= 0) break;
/* Because this can change with runtime interaction */
nmap_adjust_loglevel(o.packetTrace());
nsock_loop(dnspool, timeout);
}
SPM->endTask(NULL, NULL);
delete SPM;
close_dns_servers();
nsock_pool_delete(dnspool);
if (deferred_reqs.size() && o.debugging)
log_write(LOG_STDOUT, "Performing system-dns for %d domain names that were deferred\n", (int) deferred_reqs.size());
if (deferred_reqs.size()) {
Snprintf(spmobuf, sizeof(spmobuf), "System DNS resolution of %u host%s.", (unsigned) deferred_reqs.size(), deferred_reqs.size()-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
for(i=0, reqI = deferred_reqs.begin(); reqI != deferred_reqs.end(); reqI++, i++) {
struct sockaddr_storage ss;
size_t sslen;
char hostname[FQDN_LEN + 1] = "";
if (keyWasPressed())
SPM->printStats((double) i / deferred_reqs.size(), NULL);
tpreq = *reqI;
if (tpreq->targ->TargetSockAddr(&ss, &sslen) != 0)
fatal("Failed to get target socket address.");
if (getnameinfo((struct sockaddr *)&ss, sslen, hostname,
sizeof(hostname), NULL, 0, NI_NAMEREQD) == 0) {
stat_ok++;
stat_cname++;
tpreq->targ->setHostName(hostname);
}
delete tpreq;
}
SPM->endTask(NULL, NULL);
delete SPM;
}
deferred_reqs.clear();
}
static void nmap_system_rdns_core(Target **targets, int num_targets) {
Target **hostI;
Target *currenths;
struct sockaddr_storage ss;
size_t sslen;
char hostname[FQDN_LEN + 1] = "";
char spmobuf[1024];
int i;
for(hostI = targets; hostI < targets+num_targets; hostI++) {
currenths = *hostI;
if (((currenths->flags & HOST_UP) || o.always_resolve) && !o.noresolve) stat_actual++;
}
Snprintf(spmobuf, sizeof(spmobuf), "System DNS resolution of %d host%s.", stat_actual, stat_actual-1 ? "s" : "");
SPM = new ScanProgressMeter(spmobuf);
for(i=0, hostI = targets; hostI < targets+num_targets; hostI++, i++) {
currenths = *hostI;
if (keyWasPressed())
SPM->printStats((double) i / stat_actual, NULL);
if (((currenths->flags & HOST_UP) || o.always_resolve) && !o.noresolve) {
if (currenths->TargetSockAddr(&ss, &sslen) != 0)
fatal("Failed to get target socket address.");
if (getnameinfo((struct sockaddr *)&ss, sslen, hostname,
sizeof(hostname), NULL, 0, NI_NAMEREQD) == 0) {
stat_ok++;
currenths->setHostName(hostname);
}
}
}
SPM->endTask(NULL, NULL);
delete SPM;
}
// Publicly available function. Basically just a wrapper so we
// can record time information, restart statistics, etc.
void nmap_mass_rdns(Target **targets, int num_targets) {
struct timeval now;
gettimeofday(&starttv, NULL);
stat_actual = stat_ok = stat_nx = stat_sf = stat_trans = stat_dropped = stat_cname = 0;
if (o.mass_dns)
nmap_mass_rdns_core(targets, num_targets);
else
nmap_system_rdns_core(targets, num_targets);
gettimeofday(&now, NULL);
if (stat_actual > 0) {
if (o.debugging || o.verbose >= 3) {
if (o.mass_dns) {
// #: Number of DNS servers used
// OK: Number of fully reverse resolved queries
// NX: Number of confirmations of 'No such reverse domain eXists'
// DR: Dropped IPs (no valid responses were received)
// SF: Number of IPs that got 'Server Failure's
// TR: Total number of transmissions necessary. The number of domains is ideal, higher is worse
log_write(LOG_STDOUT, "DNS resolution of %d IPs took %.2fs. Mode: Async [#: %lu, OK: %d, NX: %d, DR: %d, SF: %d, TR: %d, CN: %d]\n",
stat_actual, TIMEVAL_MSEC_SUBTRACT(now, starttv) / 1000.0,
(unsigned long) servs.size(), stat_ok, stat_nx, stat_dropped, stat_sf, stat_trans, stat_cname);
} else {
log_write(LOG_STDOUT, "DNS resolution of %d IPs took %.2fs. Mode: System [OK: %d, ??: %d]\n",
stat_actual, TIMEVAL_MSEC_SUBTRACT(now, starttv) / 1000.0,
stat_ok, stat_actual - stat_ok);
}
}
}
firstrun=0;
}
// Returns a list of known DNS servers
std::list<std::string> get_dns_servers() {
init_servs();
// If the user said --system-dns (!o.mass_dns), we should never return a list
// of servers.
assert(o.mass_dns || servs.empty());
std::list<dns_server>::iterator servI;
std::list<std::string> serverList;
for(servI = servs.begin(); servI != servs.end(); servI++) {
serverList.push_back(inet_socktop((struct sockaddr_storage *) &servI->addr));
}
return serverList;
}
bool DNS::Factory::ipToPtr(const sockaddr_storage &ip, std::string &ptr)
{
switch (ip.ss_family) {
case AF_INET:
{
ptr.clear();
char ipv4_c[INET_ADDRSTRLEN];
if(!sockaddr_storage_iptop(&ip, ipv4_c)) return false;
std::string ipv4 = ipv4_c;
std::string octet;
std::string::const_reverse_iterator crend = ipv4.rend();
for (std::string::const_reverse_iterator c=ipv4.rbegin(); c != crend; ++c)
if((*c)=='.')
{
ptr += octet + ".";
octet.clear();
}
else
octet = (*c) + octet;
ptr += octet + IPV4_PTR_DOMAIN;
break;
}
case AF_INET6:
{
ptr.clear();
const struct sockaddr_in6 &s6 = (const struct sockaddr_in6 &) ip;
const u8 * ipv6 = s6.sin6_addr.s6_addr;
for (short i=15; i>=0; --i)
{
char tmp[3];
sprintf(tmp, "%02x", ipv6[i]);
ptr += '.';
ptr += tmp[1];
ptr += '.';
ptr += tmp[0];
}
ptr.erase(ptr.begin());
ptr += IPV6_PTR_DOMAIN;
break;
}
default:
return false;
}
return true;
}
bool DNS::Factory::ptrToIp(const std::string &ptr, sockaddr_storage &ip)
{
const char *cptr = ptr.c_str();
const char *p = NULL;
memset(&ip, 0, sizeof(sockaddr_storage));
// Check whether the name ends with the IPv4 PTR domain
if (NULL != (p = strcasestr(cptr + ptr.length() + 1 - sizeof(C_IPV4_PTR_DOMAIN), C_IPV4_PTR_DOMAIN)))
{
struct sockaddr_in *ip4 = (struct sockaddr_in *)&ip;
u8 place_value[] = {1, 10, 100};
u8 *v = (u8 *) &(ip4->sin_addr.s_addr);
size_t place = 0;
size_t i = 0;
p--;
while (i < sizeof(ip4->sin_addr.s_addr))
{
if (*p == '.')
{
place = 0;
p--;
i++;
}
if (p < cptr)
{
break;
}
u8 n = *p;
if (n >= '0' && n <= '9') { // 0-9
n -= 0x30;
}
else { // invalid
return false;
}
v[i] += n * place_value[place];
place++;
p--;
}
ip.ss_family = AF_INET;
}
// If not, check IPv6
else if (NULL != (p = strcasestr(cptr + ptr.length() + 1 - sizeof(C_IPV6_PTR_DOMAIN), C_IPV6_PTR_DOMAIN)))
{
struct sockaddr_in6 *ip6 = (struct sockaddr_in6 *)&ip;
u8 alt = 0;
size_t i=0;
p--;
while (i < sizeof(ip6->sin6_addr.s6_addr))
{
if (*p == '.')
{
p--;
}
if (p < cptr)
{
break;
}
u8 n = *p;
if (n < 0x3A) { // 0-9
n -= 0x30;
}
else if (n < 0x47) { // A-F
n -= 0x37;
}
else if (n < 0x67) { // a-f
n -= 0x57;
}
else { // invalid
return false;
}
if (n < 0) { // invalid
return false;
}
if (alt == 0) { // high nibble
ip6->sin6_addr.s6_addr[i] += n << 4;
alt = 1;
}
else { // low nibble
ip6->sin6_addr.s6_addr[i] += n;
alt = 0;
i++;
}
p--;
}
ip.ss_family = AF_INET6;
}
return true;
}
size_t DNS::Factory::buildSimpleRequest(const std::string &name, RECORD_TYPE rt, u8 *buf, size_t maxlen)
{
size_t ret=0 , tmp=0;
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(progressiveId++, buf, ID, maxlen)); // Postincrement inmportant here
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(OP_STANDARD_QUERY | RECURSION_DESIRED, buf, FLAGS_OFFSET, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(1, buf, QDCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, ANCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, NSCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(0, buf, ARCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putDomainName(name, buf, DATA, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(rt, buf, ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, putUnsignedShort(CLASS_IN, buf, ret, maxlen));
return ret;
}
size_t DNS::Factory::buildReverseRequest(const sockaddr_storage &ip, u8 *buf, size_t maxlen)
{
std::string name;
if(ipToPtr(ip,name))
return buildSimpleRequest(name, PTR, buf, maxlen);
return 0;
}
size_t DNS::Factory::putUnsignedShort(u16 num, u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+1;
if(buf && (maxlen > max_access))
{
buf[offset] = (num >> 8) & 0xFF;
buf[max_access] = num & 0xFF;
return 2;
}
return 0;
}
size_t DNS::Factory::putDomainName(const std::string &name, u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if( !( buf && (maxlen > (offset + name.length() + 1))) ) return ret;
std::string namew = name + ".";
std::string accumulator;
for (std::string::const_iterator c=namew.begin(); c != namew.end(); ++c)
{
if((*c)=='.')
{
u8 length = accumulator.length();
*(buf+offset+ret) = length;
ret += 1;
memcpy(buf+offset+ret, accumulator.c_str(), length);
ret += length;
accumulator.clear();
}
else
accumulator += (*c);
}
*(buf+offset+ret) = 0;
ret += 1;
return ret;
}
size_t DNS::Factory::parseUnsignedShort(u16 &num, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+1;
if(buf && (maxlen > max_access))
{
const u8 * n = buf + offset;
num = n[1] + (n[0]<<8);
return 2;
}
return 0;
}
size_t DNS::Factory::parseUnsignedInt(u32 &num, const u8 *buf, size_t offset, size_t maxlen)
{
size_t max_access = offset+3;
if(buf && (maxlen > max_access))
{
const u8 * n = buf + offset;
num = n[3] + (n[2]<<8) + (n[1]<<16) + (n[0]<<24);
return 4;
}
return 0;
}
size_t DNS::Factory::parseDomainName(std::string &name, const u8 *buf, size_t offset, size_t maxlen)
{
size_t tmp, ret = 0;
name.clear();
while(u8 label_length = buf[offset+ret++]) // Postincrement important here
{
if((label_length & COMPRESSED_NAME) == COMPRESSED_NAME)
{
--ret; // The byte it's part of the pointer, wasn't really consumed yet
u16 real_offset;
DNS_CHECK_ACCUMLATE(ret, tmp, parseUnsignedShort(real_offset, buf, offset+ret, maxlen));
real_offset -= COMPRESSED_NAME<<8;
if( real_offset < offset)
{
std::string val;
DNS_CHECK_ACCUMLATE(tmp, tmp, parseDomainName(val, buf, real_offset, maxlen));
name+=val;
return ret;
}
else return 0;
}
for(u8 i=0; i<label_length; ++i)
{
size_t index = offset+ret++; // Postincrement important here
DNS_CHECK_UPPER_BOUND(index, maxlen);
name += buf[index];
}
name += '.';
}
std::string::iterator it = name.end()-1;
if( *it == '.') name.erase(it);
return ret;
}
size_t DNS::A_Record::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen)
{
size_t tmp, ret = 0;
u32 num;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedInt(num, buf, offset, maxlen));
memset(&value, 0, sizeof(value));
struct sockaddr_in * ip4addr = (sockaddr_in *) &value;
ip4addr->sin_family = AF_INET;
ip4addr->sin_addr.s_addr = htonl(num);
return ret;
}
size_t DNS::Query::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if (buf && ((maxlen - offset) > 5))
{
size_t tmp=0;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseDomainName(name, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_type, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_class, buf, offset+ret, maxlen));
}
return ret;
}
size_t DNS::Answer::parseFromBuffer(const u8 *buf, size_t offset, size_t maxlen)
{
size_t ret=0;
if (buf && ((maxlen - offset) > 7))
{
size_t tmp;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseDomainName(name, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_type, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(record_class, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedInt(ttl, buf, offset+ret, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(length, buf, offset+ret, maxlen));
DNS_CHECK_UPPER_BOUND(offset+ret+length, maxlen);
switch(record_type)
{
case A:
{
record = new A_Record();
break;
}
case CNAME:
{
record = new CNAME_Record();
break;
}
case PTR:
{
record = new PTR_Record();
break;
}
default:
return 0;
}
DNS_CHECK_ACCUMLATE(ret, tmp, record->parseFromBuffer(buf, offset+ret, maxlen));
}
return ret;
}
DNS::Answer& DNS::Answer::operator=(const Answer &r)
{
name = r.name;
record_type = r.record_type;
record_class = r.record_class;
ttl = r.ttl;
length = r.length;
record = r.record->clone();
return *this;
}
size_t DNS::Packet::parseFromBuffer(const u8 *buf, size_t maxlen)
{
if( !buf || maxlen < DATA) return 0;
size_t tmp, ret = 0;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(id, buf, ID, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(flags, buf, FLAGS_OFFSET, maxlen));
u16 queries_counter, answers_counter, authorities_counter, additionals_counter;
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(queries_counter, buf, QDCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(answers_counter, buf, ANCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(authorities_counter, buf, NSCOUNT, maxlen));
DNS_CHECK_ACCUMLATE(ret, tmp, Factory::parseUnsignedShort(additionals_counter, buf, ARCOUNT, maxlen));
queries.clear();
for(u16 i=0; i<queries_counter; ++i)
{
Query q;
DNS_CHECK_ACCUMLATE(ret, tmp, q.parseFromBuffer(buf, ret, maxlen));
queries.push_back(q);
}
answers.clear();
for(u16 i=0; i<answers_counter; ++i)
{
Answer a;
DNS_CHECK_ACCUMLATE(ret, tmp, a.parseFromBuffer(buf, ret, maxlen));
answers.push_back(a);
};
return ret;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。