# TradingGym **Repository Path**: ma-yongfan/TradingGym ## Basic Information - **Project Name**: TradingGym - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-02-16 - **Last Updated**: 2024-02-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # TradingGym [](https://travis-ci.org/Yvictor/TradingGym) TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated the framework form. Not only traning env but also has backtesting and in the future will implement realtime trading env with Interactivate Broker API and so on. This training env originally design for tickdata, but also support for ohlc data format. WIP. ### Installation ``` git clone https://github.com/Yvictor/TradingGym.git cd TradingGym python setup.py install ``` ### Getting Started ``` python import random import numpy as np import pandas as pd import trading_env df = pd.read_hdf('dataset/SGXTW.h5', 'STW') env = trading_env.make(env_id='training_v1', obs_data_len=256, step_len=128, df=df, fee=0.1, max_position=5, deal_col_name='Price', feature_names=['Price', 'Volume', 'Ask_price','Bid_price', 'Ask_deal_vol','Bid_deal_vol', 'Bid/Ask_deal', 'Updown']) env.reset() env.render() state, reward, done, info = env.step(random.randrange(3)) ### randow choice action and show the transaction detail for i in range(500): print(i) state, reward, done, info = env.step(random.randrange(3)) print(state, reward) env.render() if done: break env.transaction_details ``` - obs_data_len: observation data length - step_len: when call step rolling windows will + step_len - df exmaple >|index|datetime|bid|ask|price|volume|serial_number|dealin| >|-----|--------|---|---|-----|------|-------------|------| >|0|2010-05-25 08:45:00|7188.0|7188.0|7188.0|527.0|0.0|0.0| >|1|2010-05-25 08:45:00|7188.0|7189.0|7189.0|1.0|1.0|1.0| >|2|2010-05-25 08:45:00|7188.0|7189.0|7188.0|1.0|2.0|-1.0| >|3|2010-05-25 08:45:00|7188.0|7189.0|7188.0|4.0|3.0|-1.0| >|4|2010-05-25 08:45:00|7188.0|7189.0|7188.0|2.0|4.0|-1.0| - df: dataframe that contain data for trading > serial_number -> serial num of deal at each day recalculating - fee: when each deal will pay the fee, set with your product. - max_position: the max market position for you trading share. - deal_col_name: the column name for cucalate reward used. - feature_names: list contain the feature columns to use in trading status.  ### Training #### simple dqn - WIP #### policy gradient - WIP #### actor-critic - WIP #### A3C with RNN - WIP ### Backtesting - loading env just like training ``` python env = trading_env.make(env_id='backtest_v1', obs_data_len=1024, step_len=512, df=df, fee=0.1, max_position=5, deal_col_name='Price', feature_names=['Price', 'Volume', 'Ask_price','Bid_price', 'Ask_deal_vol','Bid_deal_vol', 'Bid/Ask_deal', 'Updown']) ``` - load your own agent ``` python class YourAgent: def __init__(self): # build your network and so on pass def choice_action(self, state): ## your rule base conditon or your max Qvalue action or Policy Gradient action # action=0 -> do nothing # action=1 -> buy 1 share # action=2 -> sell 1 share ## in this testing case we just build a simple random policy return np.random.randint(3) ``` - start to backtest ``` python agent = YourAgent() transactions = [] while not env.backtest_done: state = env.backtest() done = False while not done: state, reward, done, info = env.step(agent.choice_action(state)) #print(state, reward) #env.render() if done: transactions.append(info) break transaction = pd.concate(transactions) transaction ```
step | datetime | transact | transact_type | price | share | price_mean | position | reward_fluc | reward | reward_sum | color | rotation | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 1537 | 2013-04-09 10:58:45 | Buy | new | 277.1 | 1.0 | 277.100000 | 1.0 | 0.000000e+00 | 0.000000e+00 | 0.000000 | 1 | 1 |
5 | 3073 | 2013-04-09 11:47:26 | Sell | cover | 276.8 | -1.0 | 277.100000 | 0.0 | -4.000000e-01 | -4.000000e-01 | -0.400000 | 2 | 2 |
10 | 5633 | 2013-04-09 13:23:40 | Sell | new | 276.9 | -1.0 | 276.900000 | -1.0 | 0.000000e+00 | 0.000000e+00 | -0.400000 | 2 | 1 |
11 | 6145 | 2013-04-09 13:30:36 | Sell | new | 276.7 | -1.0 | 276.800000 | -2.0 | 1.000000e-01 | 0.000000e+00 | -0.400000 | 2 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
211 | 108545 | 2013-04-19 13:18:32 | Sell | new | 286.7 | -1.0 | 286.525000 | -2.0 | -4.500000e-01 | 0.000000e+00 | 30.650000 | 2 | 1 |
216 | 111105 | 2013-04-19 16:02:01 | Sell | new | 289.2 | -1.0 | 287.416667 | -3.0 | -5.550000e+00 | 0.000000e+00 | 30.650000 | 2 | 1 |
217 | 111617 | 2013-04-19 17:54:29 | Sell | new | 289.2 | -1.0 | 287.862500 | -4.0 | -5.650000e+00 | 0.000000e+00 | 30.650000 | 2 | 1 |
218 | 112129 | 2013-04-19 21:36:21 | Sell | new | 288.0 | -1.0 | 287.890000 | -5.0 | -9.500000e-01 | 0.000000e+00 | 30.650000 | 2 | 1 |
219 | 112129 | 2013-04-19 21:36:21 | Buy | cover | 288.0 | 5.0 | 287.890000 | 0.0 | 0.000000e+00 | -1.050000e+00 | 29.600000 | 1 | 2 |
128 rows × 13 columns