# CUDA-Learn-Note **Repository Path**: magicor/CUDA-Learn-Note ## Basic Information - **Project Name**: CUDA-Learn-Note - **Description**: https://github.com/DefTruth/CUDA-Learn-Note.git - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-03-06 - **Last Updated**: 2024-03-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CUDA比赛/C++笔记/CUDA笔记 📔📕📗
Star History Chart
CUDA-Learn-Note: CUDA 笔记 / 高频比赛题汇总 / C++笔记,个人笔记,更新随缘: sgemm、sgemv、warp reduce、block reduce、dot、elementwise、softmax、layernorm、rmsnorm、histogram、relu、sigmoid ... ## 0x00 前言 前段时间参加了一些`大模型`比赛,大部分都要手撕CUDA,因此也整体复习了一遍CUDA优化相关的内容,整理了一些高频题的基本写法,保存在这里也便于日后自己复习。当然,有些代码不一定是最优化解,比如GEMM,想要在比赛短短的30分钟内写一个好的`GEMM` Kernel,是有些难度的。印象比较深刻的是,其中有一场比赛2个多小时,一个小时问项目,剩下一个小时在写GEMM,虽然写的kernel很一般,但是印象还挺深刻的。[代码文件](./cuda-check/check.cu) TIPS: 仓库整理的代码为方便自己复习回顾,不喜欢的请自动跳过哈。 ## 0x01 高频比赛题汇总简介
相关kernel如下。也就是不到1000行代码,建议背下来,我个人是喜欢背记,背的过程中基本就慢慢理解所有细节。当然,每个人的学习方法都不一样哈,自己觉得舒服就行。 - [x] [sgemm naive, sgemm + block-tile + k-tile + vec4](#sgemm) - [x] [sgemv k32/k128/k16 kernel](#sgemv) - [x] [warp/block reduce sum/max](#warpreduce) - [x] [block all reduce + vec4](#blockallreduce) - [x] [dot product, dot product + vec4](#dot) - [x] [elementwise, elementwise + vec4](#elementwise) - [x] [histogram, histogram + vec4](#histogram) - [x] [softmax, softmax + vec4 (grid level memory fence)](#softmax) - [x] [safe softmax, safe softmax + vec4](#safesoftmax) - [x] [sigmoid, sigmoid + vec4](#sigmoid) - [x] [relu, relu + vec4](#relu) - [x] [layer_norm, layer_norm + vec4](#layernorm) - [x] [rms_norm, rms_norm + vec4](#rmsnorm) - [x] [nms](#NMS) - [ ] sgemm + double buffer - [ ] sgemm + fp16 - [ ] ... 题内话,大模型相关的岗位,手撕CUDA的概率非常大,leetcode反而写的少,就前段时间个人的经验,基本是4:1的比例,还是建议好好复习下CUDA。当然,这些只是最简单的kernel实现,比如flash_attn,FMHA这些优化手段,就不在这里写了,比赛中基本都会问到。后边有空再补档一些文章吧。 ## 0x02 sgemm naive, sgemm + block-tile + k-tile + vec4 ([©️back👆🏻](#kernellist))
```c++ #include #include #include #include #include #include #define WARP_SIZE 32 #define INT4(value) (reinterpret_cast(&(value))[0]) #define FLOAT4(value) (reinterpret_cast(&(value))[0]) // SGEMM: Block Tile + K Tile, with smem // Block Tile (BM, BN) + K Tile (BK=32) // grid((N + BN - 1) / BN, (M + BM - 1) / BM), block(BN, BM) // a: MxK, b: KxN, c: MxN, compute: c = a * b, all row major __global__ void sgemm(float* a, float* b, float* c, int M, int N, int K) { // [1] Block Tile: 32x32的block处理c上一块32x32的元素计算 // [2] K Tile: 使用共享内存,并将K分块为BK大小的块 constexpr int BM = 32; constexpr int BN = 32; constexpr int BK = 32; __shared__ float s_a[BM][BK], s_b[BK][BN]; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int tid = threadIdx.y * blockDim.x + tx; // tid within the block // load values to shared memory, 32x32 threads working together // to fetch data along the row direction of a and b both for s_a // and s_b 32x32x4x2=8KB, we use 32x32 threads within block to // load 32x32 elements from global memory to shared memory, namely, // each thread will load 1 element. int load_smem_a_m = tid / 32; // 0~31, tid / 32, tid / BM, threadIdx.y int load_smem_a_k = tid % 32; // 0~31, tid % 32, tid % BK, threadIdx.x int load_smem_b_k = tid / 32; // 0~31, tid / 32, tid / BK, threadIdx.y int load_smem_b_n = tid % 32; // 0~31, tid % 32, tid % BN, threadIdx.x int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c // if (load_gmem_a_m >= M || load_gmem_b_n >= N) return; float sum = 0.f; for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) { int load_gmem_a_k = bk * BK + load_smem_a_k; int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k; s_a[load_smem_a_m][load_smem_a_k] = a[load_gmem_a_addr]; int load_gmem_b_k = bk * BK + load_smem_b_k; int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n; s_b[load_smem_b_k][load_smem_b_n] = b[load_gmem_b_addr]; __syncthreads(); #pragma unroll for (int k = 0; k < BK; ++k) { int comp_smem_a_m = load_smem_a_m; int comp_smem_b_n = load_smem_b_n; sum += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n]; } __syncthreads(); } int store_gmem_c_m = load_gmem_a_m; int store_gmem_c_n = load_gmem_b_n; int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n; c[store_gmem_c_addr] = sum; } // SGEMM: Block Tile + Thread Tile + K Tile + Vec4, with smem // BK:TILE_K=8 BM=BN=128 // TM=TN=8 增加计算密度 BM/TM=16 BN/TN=16 // dim3 blockDim(BN/TN, BM/TM); // dim3 gridDim((N + BN - 1) / BN, (M + BM - 1) / BM) __global__ void sgemm_thread_tile_vec4( float* a, float* b, float* c, int M, int N, int K) { // [1] Block Tile: 一个16x16的block处理C上大小为128X128的一个目标块 // [2] Thread Tile: 每个thread负责计算TM*TN(8*8)个元素,增加计算密度 // [3] K Tile: 将K分块,每块BK大小,迭代(K+BK-1/BK)次, // 每次计算TM*TN个元素各自的部分乘累加 // [4] Vectorize: 减少load和store指令,使用float4 constexpr int BM = 128; constexpr int BN = 128; constexpr int BK = 8; constexpr int TM = 8; constexpr int TN = 8; int bx = blockIdx.x; int by = blockIdx.y; int tx = threadIdx.x; int ty = threadIdx.y; int tid = threadIdx.y * blockDim.x + tx; // tid within the block __shared__ float s_a[BM][BK], s_b[BK][BN]; // 2*128*8*4=8KB // 0. 先计算shared memory中的索引 // tid和需要加载的smem s_a[BM][BK] 之间的索引关系 BM=128 BK=8 按行读取 A行主序 // 对于s_a每行8个数据,每个线程读取4个,需要2个线程;总共128行,需要128x2刚好256线程 int load_smem_a_m = tid / 2; // tid/2 (128/8)*(128/8)=256 threads per block, tid/2->[0,128), BM=128 0~127 int load_smem_a_k = (tid % 2 == 0) ? 0 : 4; // (tid%2 == 0) ? 0 : 4, col of s_a 0,4 // tid和需要加载的smem s_b[BK][BN] 之间的索引关系 BK=8 BN=128 按行读取 B行主序 // 对于s_b每行128个数据,每个线程读4个数据,需要32个线程;总共8行,需要32x8=256个线程 int load_smem_b_k = tid / 32; // tid/32, row of s_b 256/32=8 行 0~7 int load_smem_b_n = (tid % 32) * 4; // (tid % 32) * 4, col of s_b 0,4,...,124 // 1. 再计算全局内存中的索引 // 要加载到s_a中的元素对应到A全局内存中的行数 每个block负责出C中大小为BM*BN的块 int load_gmem_a_m = by * BM + load_smem_a_m; // global row of a and c int load_gmem_b_n = bx * BN + load_smem_b_n; // global col of b and c float r_c[TM][TN] = {0.0}; // 8x8 // 2. 先对K进行分块,每块BK大小 for (int bk = 0; bk < (K + BK - 1) / BK; ++bk) { // 加载数据到共享内存smem s_a BM*BK 128*8 vectorize float4 int load_gmem_a_k = bk * BK + load_smem_a_k; // global col of a int load_gmem_a_addr = load_gmem_a_m * K + load_gmem_a_k; FLOAT4(s_a[load_smem_a_m][load_smem_a_k]) = FLOAT4(a[load_gmem_a_addr]); // 加载数据到共享内存smem s_b BK*BN 8*128 vectorize float4 int load_gmem_b_k = bk * BK + load_smem_b_k; // global row of b int load_gmem_b_addr = load_gmem_b_k * N + load_gmem_b_n; FLOAT4(s_b[load_smem_b_k][load_smem_b_n]) = FLOAT4(b[load_gmem_b_addr]); __syncthreads(); #pragma unroll for (int k = 0; k < BK; k++) { // 3. 每个线程负责计算BM*BN(12x128)中的TM*TN(8x8)个元素 #pragma unroll for (int m = 0; m < TM; m++) { #pragma unroll for (int n = 0; n < TN; n++) { // k from 0~7,0 ~ BK, ty and tx range from 0 to 15, 16x8=128 int comp_smem_a_m = ty * TM + m; // 128*8 128/TM(8)=16 M方向 16线程 int comp_smem_b_n = tx * TN + n; // 8*128 128/TN(8)=16 N方向 16线程 r_c[m][n] += s_a[comp_smem_a_m][k] * s_b[k][comp_smem_b_n]; } } } __syncthreads(); } #pragma unroll for (int m = 0; m < TM; ++m) { int store_gmem_c_m = by * BM + ty * TM + m; #pragma unroll for (int n = 0; n < TN; n += 4) { int store_gmem_c_n = bx * BN + tx * TN + n; int store_gmem_c_addr = store_gmem_c_m * N + store_gmem_c_n; FLOAT4(c[store_gmem_c_addr]) = FLOAT4(r_c[m][n]); } } } ``` 这里gemm的实现比较简单,只使用了CUDA Cores,并且只实现Block Tile + K Tile以及Block Tile + K Tile+Thread Tile+向量化的版本。主要在于如何加载gmem中的数据到smem,也就是把全局内存中的数据索引mapping到共享内存中的。核心思维:把一个block中的线程id按照线性来理解,然后把这个线性的id和全局内存索引以及共享内存索引进行匹配。比如Block Tile + K Tile的实现,block内一共32x32个Threads,需要加载到smem的数据也是32x32,那么,最简单的做法,只需要每个线程加载一个互不重复数据即可。NOTE,本文的gemm kernel修改自:[紫气东来:CUDA(三):通用矩阵乘法:从入门到熟练](https://zhuanlan.zhihu.com/p/657632577) ## 0x03 warp/block reduce sum/max ([©️back👆🏻](#kernellist))
```C++ // Warp Reduce Sum template __device__ __forceinline__ float warp_reduce_sum(float val) { #pragma unroll for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) { val += __shfl_xor_sync(0xffffffff, val, mask); } return val; } // Warp Reduce Max template __device__ __forceinline__ float warp_reduce_max(float val) { #pragma unroll for (int mask = kWarpSize >> 1; mask >= 1; mask >>= 1) { val = fmaxf(val, __shfl_xor_sync(0xffffffff, val, mask)); } return val; } // Block reduce sum/max/min device helper for Layer/RMS Norm/Softmax etc. // grid 1D block 1D, grid(N/128), block(128) template __device__ __forceinline__ float block_reduce_sum(float val) { // always <= 32 warps per block (limited by 1024 threads per block) constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; int warp = threadIdx.x / WARP_SIZE; int lane = threadIdx.x % WARP_SIZE; static __shared__ float shared[NUM_WARPS]; val = warp_reduce_sum(val); if (lane == 0) shared[warp] = val; __syncthreads(); val = (lane < NUM_WARPS) ? shared[lane] : 0.0f; val = warp_reduce_sum(val); return val; } template __device__ __forceinline__ float block_reduce_max(float val) { // always <= 32 warps per block (limited by 1024 threads per block) constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; int warp = threadIdx.x / WARP_SIZE; int lane = threadIdx.x % WARP_SIZE; static __shared__ float shared[NUM_WARPS]; val = warp_reduce_max(val); if (lane == 0) shared[warp] = val; __syncthreads(); val = (lane < NUM_WARPS) ? shared[lane] : -FLT_MAX; val = warp_reduce_max(val); return val; } ``` warp reduce几乎已经成为大部分reduce kernel的标准写法了,比如vLLM中,就是这种经典的写法。所以,先搞懂warp reduce(也就是搞懂各种warp functions的用法),再去写其他kernel,思路就会容易很多。需要注意的是,warp函数处理的是寄存器上的数据,也就是说,此时,没必要先加载数据到smem,再进行reduce,直接加载到寄存器即可(以前犯过这个小错误...)。Warp Functions建议参考:[jhang:CUDA编程入门之Warp-Level Primitives](https://zhuanlan.zhihu.com/p/572820783) ## 0x04 block all reduce + vec4 ([©️back👆🏻](#kernellist))
```c++ // Block All Reduce Sum // grid(N/128), block(128) // a: Nx1, y=sum(a) template __global__ void block_all_reduce_sum(float* a, float* y, int N) { int tid = threadIdx.x; int idx = blockIdx.x * NUM_THREADS + tid; constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; __shared__ float reduce_smem[NUM_WARPS]; // keep the data in register is enougth for warp operaion. float sum = (idx < N) ? a[idx] : 0.0f; int warp = tid / WARP_SIZE; int lane = tid % WARP_SIZE; // perform warp sync reduce. sum = warp_reduce_sum(sum); // warp leaders store the data to shared memory. if (lane == 0) reduce_smem[warp] = sum; __syncthreads(); // make sure the data is in shared memory. // the first warp compute the final sum. sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f; if (warp == 0) sum = warp_reduce_sum(sum); if (tid == 0) atomicAdd(y, sum); } // Block All Reduce Sum + float4 // grid(N/128), block(128/4) // a: Nx1, y=sum(a) template __global__ void block_all_reduce_sum_vec4(float* a, float* y, int N) { int tid = threadIdx.x; int idx = (blockIdx.x * NUM_THREADS + tid) * 4; constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; __shared__ float reduce_smem[NUM_WARPS]; float4 reg_a = FLOAT4(a[idx]); // keep the data in register is enougth for warp operaion. float sum = (idx < N) ? (reg_a.x + reg_a.y + reg_a.z + reg_a.w) : 0.0f; int warp = tid / WARP_SIZE; int lane = tid % WARP_SIZE; // perform warp sync reduce. sum = warp_reduce_sum(sum); // warp leaders store the data to shared memory. if (lane == 0) reduce_smem[warp] = sum; __syncthreads(); // make sure the data is in shared memory. // the first warp compute the final sum. sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f; if (warp == 0) sum = warp_reduce_sum(sum); if (tid == 0) atomicAdd(y, sum); } ``` block all reduce是在warp reduce的基础上进行的,reduce_smem这部分的共享内存申请无法避免,这是用来同步每个warp之间得到局部结果。注意,最后,还需要atomicAdd做一个block级别的原子操作,以得到全局的和。float4向量化优化访存,可以减缓WarpScheduler发送指令的压力。 ## 0x05 sgemv k32/k128/k16 kernel ([©️back👆🏻](#kernellist))
```C++ // SGEMV: Warp SGEMV K32 // 假设K为32的倍数,每个warp负责一行 // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4 // a: MxK, x: Kx1, y: Mx1, compute: y = a * x __global__ void sgemv_k32(float* a, float* x, float* y, int M, int K) { int tx = threadIdx.x; // 0~31 int ty = threadIdx.y; // 0~4 int bx = blockIdx.x; // 0~M/4 int lane = tx % WARP_SIZE; // 0~31 int m = bx * blockDim.y + ty; // (0~M/4) * 4 + (0~3) if (m < M) { float sum = 0.0f; int NUM_WARPS = (K + WARP_SIZE - 1) / WARP_SIZE; #pragma unroll for (int w = 0; w < NUM_WARPS; ++w) { // 若NUM_WARPS>=2,先将当前行的数据累加到第一个warp中 int k = w * WARP_SIZE + lane; sum += a[m * K + k] * x[k]; } sum = warp_reduce_sum(sum); if (lane == 0) y[m] = sum; } } // SGEMV: Warp SGEMV K128 + Vec4 // 假设K为128的倍数 float4 // grid(M/4), block(32,4) blockDim.x=32=K, blockDim.y=4 // a: MxK, x: Kx1, y: Mx1, compute: y = a * x __global__ void sgemv_k128(float* a, float* x, float* y, int M, int K) { // 每个线程负责4个元素,一个warp覆盖128个元素 int tx = threadIdx.x; // 0~31 int ty = threadIdx.y; // 0~3 int bx = blockIdx.x; // 0~M/4 int lane = tx % WARP_SIZE; // 0~31 int m = blockDim.y * bx + ty; // (0~M/4) * 4 + (0~3) if (m < M) { float sum = 0.0f; // process 4*WARP_SIZE elements per warp. int NUM_WARPS = (((K + WARP_SIZE - 1) / WARP_SIZE) + 4 - 1) / 4; #pragma unroll for (int w = 0; w < NUM_WARPS; ++w) { int k = (w * WARP_SIZE + lane) * 4; float4 reg_x = FLOAT4(x[k]); float4 reg_a = FLOAT4(a[m * K + k]); sum += (reg_a.x * reg_x.x + reg_a.y * reg_x.y + reg_a.z * reg_x.z + reg_a.w * reg_x.w); } sum = warp_reduce_sum(sum); if(lane == 0) y[m] = sum; } } // SGEMV: Warp SGEMV K16 // 假设K为16 < 32,每个warp负责2行,每行有16个元素 // NUM_THREADS=128, NUM_WARPS=NUM_THREADS/WARP_SIZE; // NUM_ROWS=NUM_WARPS * ROW_PER_WARP, grid(M/NUM_ROWS), block(32,NUM_WARPS) // a: MxK, x: Kx1, y: Mx1, compute: y = a * x template __global__ void sgemv_k16(float* A, float* x, float* y, int M, int K) { constexpr int K_WARP_SIZE = (WARP_SIZE + ROW_PER_WARP - 1) / ROW_PER_WARP; int tx = threadIdx.x; // 0~31 int ty = threadIdx.y; // 0~NUM_WARPS int bx = blockIdx.x; // 0~M/NUM_ROWS (NUM_ROWS=NUM_WARPS * ROW_PER_WARP) int lane = tx % WARP_SIZE; // 0~31 int k = lane % K_WARP_SIZE; // 0~15 // gloabl row of a: MxK and y:Mx1, blockDim.y=NUM_WARPS int m = (blockDim.y * bx + ty) * ROW_PER_WARP + lane / K_WARP_SIZE; if (m < M) { float sum = A[m * K + k] * x[k]; sum = warp_reduce_sum(sum); // 注意是k == 0,而不是lane == 0 if(k == 0) y[m] = sum; } } ``` 估计有些大佬倒立都能写sgemv的各种优化版了,核心思路其实也是基于warp reduce,考虑K的不同情况进行优化。本文的sgemv kernel修改自:[有了琦琦的棍子:深入浅出GPU优化系列:gemv优化](https://zhuanlan.zhihu.com/p/494144694) ## 0x06 dot product, dot product + vec4 ([©️back👆🏻](#kernellist))
```c++ // Dot Product // grid(N/128), block(128) // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b)) template __global__ void dot(float* a, float* b, float* y, int N) { int tid = threadIdx.x; int idx = blockIdx.x * NUM_THREADS + tid; constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; __shared__ float reduce_smem[NUM_WARPS]; // keep the data in register is enougth for warp operaion. float prod = (idx < N) ? a[idx] * b[idx] : 0.0f; int warp = tid / WARP_SIZE; int lane = tid % WARP_SIZE; // perform warp sync reduce. prod = warp_reduce_sum(prod); // warp leaders store the data to shared memory. if (lane == 0) reduce_smem[warp] = prod; __syncthreads(); // make sure the data is in shared memory. // the first warp compute the final sum. prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f; if (warp == 0) prod = warp_reduce_sum(prod); if (tid == 0) atomicAdd(y, prod); } // Dot Product + Vec4 // grid(N/128), block(128/4) // a: Nx1, b: Nx1, y=sum(elementwise_mul(a,b)) template __global__ void dot_vec4(float* a, float* b, float* y, int N) { int tid = threadIdx.x; int idx = (blockIdx.x * NUM_THREADS + tid) * 4; constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; __shared__ float reduce_smem[NUM_WARPS]; float4 reg_a = FLOAT4(a[idx]); float4 reg_b = FLOAT4(b[idx]); float prod = (idx < N) ? (reg_a.x * reg_b.x + reg_a.y * reg_b.y + reg_a.z * reg_b.z + reg_a.w * reg_b.w) : 0.0f; int warp = tid / WARP_SIZE; int lane = tid % WARP_SIZE; // perform warp sync reduce. prod = warp_reduce_sum(prod); // warp leaders store the data to shared memory. if (lane == 0) reduce_smem[warp] = prod; __syncthreads(); // make sure the data is in shared memory. // the first warp compute the final sum. prod = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f; if (warp == 0) prod = warp_reduce_sum(prod); if (tid == 0) atomicAdd(y, prod); } ``` dot product kernel的核心就是block reduce,不多说了。 ## 0x07 elementwise, elementwise + vec4 ([©️back👆🏻](#kernellist))
```c++ // ElementWise Add // grid(N/128), block(128) // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b) __global__ void elementwise_add(float* a, float* b, float* c, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) c[idx] = a[idx] + b[idx]; } // ElementWise Add + Vec4 // grid(N/128), block(128/4) // a: Nx1, b: Nx1, c: Nx1, c = elementwise_add(a, b) __global__ void elementwise_add_vec4(float* a, float* b, float* c, int N) { int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x); if (idx < N) { float4 reg_a = FLOAT4(a[idx]); float4 reg_b = FLOAT4(b[idx]); float4 reg_c; reg_c.x = reg_a.x + reg_b.x; reg_c.y = reg_a.y + reg_b.y; reg_c.z = reg_a.z + reg_b.z; reg_c.w = reg_a.w + reg_b.w; FLOAT4(c[idx]) = reg_c; } } ``` elementwise可以考虑加点向量化进行访存优化。 ## 0x08 histogram, histogram + vec4
```c++ // Histogram // grid(N/128), block(128) // a: Nx1, y: count histogram __global__ void histogram(int* a, int* y, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) atomicAdd(&(y[a[idx]]), 1); } // Histogram + Vec4 // grid(N/128), block(128/4) // a: Nx1, y: count histogram __global__ void histogram_vec4(int* a, int* y, int N) { int idx = 4 * (blockIdx.x * blockDim.x + threadIdx.x); if (idx < N) { int4 reg_a = INT4(a[idx]); atomicAdd(&(y[reg_a.x]), 1); atomicAdd(&(y[reg_a.y]), 1); atomicAdd(&(y[reg_a.z]), 1); atomicAdd(&(y[reg_a.w]), 1); } } ``` 统计频数直方图,很简单,两行代码搞定。 ## 0x09 softmax, softmax + vec4 (grid level memory fence) ([©️back👆🏻](#kernellist))
```c++ // Softmax x: N, y: N // grid(N/128), block(K=128) template __global__ void softmax(float* x, float* y, float* total, int N) { const int tid = threadIdx.x; const int idx = blockIdx.x * blockDim.x + tid; constexpr int NUM_WARPS = (NUM_THREADS + WARP_SIZE - 1) / WARP_SIZE; __shared__ float reduce_smem[NUM_WARPS]; float sum = (idx < N) ? expf(x[idx]) : 0.0f; int warp = tid / WARP_SIZE; int lane = tid % WARP_SIZE; sum = warp_reduce_sum(sum); if (lane == 0) reduce_smem[warp] = sum; __syncthreads(); // compute the final sum in each warp sum = (lane < NUM_WARPS) ? reduce_smem[lane] : 0.0f; sum = warp_reduce_sum(sum); // sum(e^x_0,...,e^x_n-1) // get the total sum of all blocks. if (tid == 0) atomicAdd(total, sum); __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步 // e^x_i/sum(e^x_0,...,e^x_n-1) if (idx < N) y[idx] = block_smem[tid] / (*total); } // Softmax x: N, y: N // grid(N/128), block(K=128) template __global__ void softmax_v2(float* x, float* y, float* total, int N) { const int tid = threadIdx.x; const int idx = blockIdx.x * blockDim.x + tid; float exp_val = (idx < N) ? expf(x[idx]) : 0.0f; float sum = block_reduce_sum(exp_val); // get the total sum of all blocks. if (tid == 0) atomicAdd(total, sum); __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步 // e^x_i/sum(e^x_0,...,e^x_n-1) if (idx < N) y[idx] = exp_val / (*total); } // Softmax Vec4 x: N, y: N // grid(N/128), block(128/4) template __global__ void softmax_v2_vec4(float* x, float* y, float* total, int N) { const int tid = threadIdx.x; const int idx = (blockIdx.x * blockDim.x + tid) * 4; float4 reg_x = FLOAT4(x[idx]); float4 reg_exp; reg_exp.x = (idx < N) ? expf(reg_x.x) : 0.0f; reg_exp.y = (idx < N) ? expf(reg_x.y) : 0.0f; reg_exp.z = (idx < N) ? expf(reg_x.z) : 0.0f; reg_exp.w = (idx < N) ? expf(reg_x.w) : 0.0f; float exp_val = (reg_exp.x + reg_exp.y + reg_exp.z + reg_exp.w); float sum = block_reduce_sum(exp_val); // get the total sum of all blocks. if (tid == 0) atomicAdd(total, sum); __threadfence(); // grid level memory fence 注意这里需要网格级别的内存同步 // e^x_i/sum(e^x_0,...,e^x_n-1) if (idx < N) { float4 reg_y; reg_y.x = reg_exp.x / (*total); reg_y.y = reg_exp.y / (*total); reg_y.z = reg_exp.z / (*total); reg_y.w = reg_exp.w / (*total); FLOAT4(y[idx]) = reg_y; } } ``` softmax稍微要注意的就是内存同步的问题,这里,你需要做一个网格级别的同步,而不能仅仅是block级别,否则拿不到全局的exp sum作为分母项。因此使用 __threadfence 这个网格及内存同步操作。不过效率我还没测过,实在要高效的话,可能得整成FA2那样的 1-pass + online softmax的实现。不过,如果是比赛的话,就不要太为难自己了...,但是FA1/FA2的论文很经典,强烈建议多读几遍。 ## 0x0a safe softmax, safe softmax + vec4 ([©️back👆🏻](#kernellist))
```c++ // Safe Softmax x: N, y: N // grid(N/128), block(K=128) template __global__ void softmax_safe(float* x, float* y, float* total, int N) { const int tid = threadIdx.x; const int idx = blockIdx.x * blockDim.x + tid; float ori_val = (idx < N) ? x[idx] : -FLT_MAX; float max_val = block_reduce_max(ori_val); float exp_val = (idx < N) ? expf(ori_val - max_val) : 0.0f; float sum = block_reduce_sum(exp_val); // get the total sum of all blocks. if (tid == 0) atomicAdd(total, sum); __threadfence(); // grid level memory fence // e^x_i/sum(e^x_0,...,e^x_n-1) if (idx < N) y[idx] = exp_val / (*total); } ``` 对比softmax减去一个max值防止数值溢出,比如float16。 ## 0x0b sigmoid, sigmoid + vec4 ([©️back👆🏻](#kernellist))
```c++ // Sigmoid x: N, y: N y=1/(1+exp(-x)) // grid(N/128), block(K=128) __global__ void sigmoid(float* x, float* y, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) y[idx] = 1.0f / (1.0f + expf(-x[idx])); } // Sigmoid x: N, y: N y=1/(1+exp(-x)) Vec4 // grid(N/128), block(128/4) __global__ void sigmoid_vec4(float* x, float* y, int N) { int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4; if (idx < N) { float4 reg_x = FLOAT4(x[idx]); float4 reg_y; reg_y.x = 1.0f / (1.0f + expf(-reg_x.x)); reg_y.y = 1.0f / (1.0f + expf(-reg_x.y)); reg_y.z = 1.0f / (1.0f + expf(-reg_x.z)); reg_y.w = 1.0f / (1.0f + expf(-reg_x.w)); FLOAT4(y[idx]) = reg_y; } } ``` ## 0x0c relu, relu + vec4 ([©️back👆🏻](#kernellist))
```c++ // Relu x: N, y: N y=max(0,x) // grid(N/128), block(K=128) __global__ void relu(float* x, float* y, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) y[idx] = fmaxf(0.0f, x[idx]); } // Relu x: N, y: N y=max(0,x) Vec4 // grid(N/128/4), block(128/4) __global__ void relu_vec4(float* x, float* y, int N) { int idx = (blockIdx.x * blockDim.x + threadIdx.x) * 4; if (idx < N) { float4 reg_x = FLOAT4(x[idx]); float4 reg_y; reg_y.x = fmaxf(0.0f, reg_x.x); reg_y.y = fmaxf(0.0f, reg_x.y); reg_y.z = fmaxf(0.0f, reg_x.z); reg_y.w = fmaxf(0.0f, reg_x.w); FLOAT4(y[idx]) = reg_y; } } ``` ## 0x0d layer_norm, layer_norm + vec4 ([©️back👆🏻](#kernellist))
```c++ // Layer Norm: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size // y=y'*g + b (g: scale, b: bias) template __global__ void layer_norm(float* x, float* y, float g, float b, int N, int K) { int tid = threadIdx.x; // 0..K-1 int bid = blockIdx.x; // 0..N-1 int idx = bid * blockDim.x + threadIdx.x; const float epsilon = 1e-5f; __shared__ float s_mean; // shared within block __shared__ float s_variance; // shared within block float value = (idx < N * K) ? x[idx] : 0.0f; // load once only float sum = block_reduce_sum(value); if (tid == 0) s_mean = sum / (float) K; // wait for s_mean in shared memory to be ready for all threads __syncthreads(); float variance = (value - s_mean) * (value - s_mean); variance = block_reduce_sum(variance); if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon); // wait for s_variance in shared memory to be ready for all threads __syncthreads(); if (idx < N * K) y[idx] = ((value - s_mean) * s_variance) * g + b; } // Layer Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x-mean(x)/std(x) each row // mean(x) = sum(x)/K, 1/std(x) = rsqrtf( sum( (x-mean(x))^2 )/K ) each row // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size // y=y'*g + b (g: scale, b: bias) template __global__ void layer_norm_vec4(float* x, float* y, float g, float b, int N, int K) { int tid = threadIdx.x; // 0..K-1 int bid = blockIdx.x; // 0..N-1 int idx = (bid * blockDim.x + threadIdx.x) * 4; const float epsilon = 1e-5f; __shared__ float s_mean; // shared within block __shared__ float s_variance; // shared within block float4 reg_x = FLOAT4(x[idx]) float value = (idx < N * K) ? (reg_x.x + reg_x.y + reg_x.z + reg_x.w) : 0.0f; float sum = block_reduce_sum(value); if (tid == 0) s_mean = sum / (float) K; // wait for s_mean in shared memory to be ready for all threads __syncthreads(); float4 reg_x_hat; reg_x_hat.x = reg_x.x - s_mean; reg_x_hat.y = reg_x.y - s_mean; reg_x_hat.z = reg_x.z - s_mean; reg_x_hat.w = reg_x.w - s_mean; float variance = reg_x_hat.x * reg_x_hat.x + reg_x_hat.y * reg_x_hat.y + reg_x_hat.z * reg_x_hat.z + reg_x_hat.w * reg_x_hat.w; variance = block_reduce_sum(variance); if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon); // wait for s_variance in shared memory to be ready for all threads __syncthreads(); float4 reg_y; reg_y.x = reg_x_hat.x * s_variance * g + b; reg_y.y = reg_x_hat.y * s_variance * g + b; reg_y.z = reg_x_hat.z * s_variance * g + b; reg_y.w = reg_x_hat.w * s_variance * g + b; if (idx < N * K) FLOAT4(y[idx]) = reg_y; } ``` layer norm实现的核心同样也是block reduce和warp reduce,然后再整点向量化... ## 0x0e rms_norm, rms_norm + vec4 ([©️back👆🏻](#kernellist))
```c++ // RMS Norm: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row // grid(N*K/K), block(K<1024) N=batch_size*seq_len, K=hidden_size // y=y'*g (g: scale) template __global__ void rms_norm(float* x, float* y, float g, int N, int K) { int tid = threadIdx.x; // 0..K-1 int bid = blockIdx.x; // 0..N-1 int idx = bid * blockDim.x + threadIdx.x; const float epsilon = 1e-5f; __shared__ float s_variance; // shared within block float value = (idx < N * K) ? x[idx] : 0.0f; // load once only float variance = value * value; variance = block_reduce_sum(variance); if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon); // wait for s_variance in shared memory to be ready for all threads __syncthreads(); if (idx < N * K) y[idx] = (value * s_variance) * g; } // RMS Norm Vec4: x: NxK(K=128<1024), y': NxK, y'=x/rms(x) each row // 1/rms(x) = rsqrtf( sum(x^2)/K ) each row // grid(N*K/K), block(K/4<1024) N=batch_size*seq_len, K=hidden_size // y=y'*g (g: scale) template __global__ void rms_norm_vec4(float* x, float* y, float g, int N, int K) { int tid = threadIdx.x; // 0..K-1 int bid = blockIdx.x; // 0..N-1 int idx = (bid * blockDim.x + threadIdx.x) * 4; const float epsilon = 1e-5f; __shared__ float s_variance; // shared within block float4 reg_x = FLOAT4(x[idx]); float variance = (idx < N * K) ? (reg_x.x * reg_x.x + reg_x.y * reg_x.y + reg_x.z * reg_x.z + reg_x.w * reg_x.w) : 0.0f; variance = block_reduce_sum(variance); if (tid == 0) s_variance = rsqrtf(variance / (float) K + epsilon); // wait for s_variance in shared memory to be ready for all threads __syncthreads(); float4 reg_y; reg_y.x = reg_x.x * s_variance * g; reg_y.y = reg_x.y * s_variance * g; reg_y.z = reg_x.z * s_variance * g; reg_y.w = reg_x.w * s_variance * g; if (idx < N * K) FLOAT4(y[idx]) = reg_y; } ``` rms norm实现的核心同样也是block reduce和warp reduce...,然后再加点float4向量化什么的。 ## 0x0d NMS ([©️back👆🏻](#kernellist))
```c++ struct Box { float x1, y1, x2, y2, score; float area() const {return (std::abs(x2 - x1 + 1)) * std::abs(y2 - y1 + 1); } float iou_of(const Box& other) const{ float inner_x1 = x1 > other.x1 ? x1 : other.x1; float inner_y1 = y1 > other.y1 ? y1 : other.y1; float inner_x2 = x2 < other.x2 ? x2 : other.x2; float inner_y2 = y2 < other.y2 ? y2 : other.y2; float inner_h = inner_y2 - inner_y1 + 1.0f; float inner_w = inner_x2 - inner_x1 + 1.0f; float inner_area = inner_h * inner_w; return (inner_area / (area() + tbox.area() - inner_area)); } } void hard_nms(std::vector &input, std::vector &output, float iou_threshold){ if (input.empty()) return; std::sort(input.begin(), input.end(),[](Box& a, Box& b) { return a.score > b.score; }); int box_num = input.size(); std::vector merged(box_num, 0); for (int i = 0; i < box_num; ++i) { if (merged[i]) continue; merged[i] = 1; for (int j = i + 1; j < box_num; ++j) { if (merged[j]) continue; float iou = input[i].iou_of(input[j]); if (iou > iou_threshold) merged[j] = 1; } output.push_back(input[i]); } } ``` CV相关的经常会要手撕NMS,也记录下。 ## 0x0f 总结 ([©️back👆🏻](#kernellist)) 可以发现,大部分kernel的基本写法都是依赖warp reduce和block reduce的,基本上只要熟练应用warp functions各种场景的写法,应该问题不大;softmax需要考虑网格级同步的问题,或者online softmax以及FlashAttention;sgemm的优化是个很大的课题,不是案例中写的这么简单,但是入门的话,基本就是tiling的思想以及如何做索引之间的mapping;sgemv的优化则主要考虑K不同的值(因为M为1了),比如K=16,64,128等情况下,如何按照warp来处理;relu、sigmoid等都是elementwise的操作,很好实现,可以再考虑加点向量化优化访存;layer norm和rms norm在数学上其实也是挺清晰简单的,落实到cuda kernel时,只要按照逐个token来处理,headdim没有超过1024的情况下(一个block最多可以放1024个threads),可以放到一个block处理,这样并行化就很好写。当然,核心还是warp reduce和block reduce;NMS是乱入的,没有CUDA版本,别问了... ## ©️License GNU General Public License v3.0 ## 🎉Contribute 🌟如果觉得有用,不妨给个🌟👆🏻Star支持一下吧~