# Fast-BEV **Repository Path**: magicor/Fast-BEV ## Basic Information - **Project Name**: Fast-BEV - **Description**: https://github.com/Sense-GVT/Fast-BEV.git - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: dev - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 1 - **Created**: 2024-06-17 - **Last Updated**: 2025-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Fast-BEV [Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline](https://arxiv.org/abs/2301.12511) ![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/fast-bev++.png) ![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/benchmark_setting.png) ![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/benchmark.png) ## Better Inference Implementation Thanks to the repository [CUDA-FastBEV](https://github.com/Mandylove1993/CUDA-FastBEV) inference using CUDA & TensorRT. And provide PTQ and QAT int8 quantization code. You can refer to it to get faster speed. ## Usage [usage](https://github.com/Sense-GVT/Fast-BEV/blob/dev/tools/fastbev_run.sh) ### Installation * CUDA>=9.2 * GCC>=5.4 * Python>=3.6 * Pytorch>=1.8.1 * Torchvision>=0.9.1 * MMCV-full==1.4.0 * MMDetection==2.14.0 * MMSegmentation==0.14.1 ### Dataset preparation ``` . ├── data │   └── nuscenes │   ├── maps │   ├── maps_bev_seg_gt_2class │   ├── nuscenes_infos_test_4d_interval3_max60.pkl │   ├── nuscenes_infos_train_4d_interval3_max60.pkl │   ├── nuscenes_infos_val_4d_interval3_max60.pkl │   ├── v1.0-test │   └── v1.0-trainval ``` [download](https://drive.google.com/drive/folders/10KyLm0xW3QiLhAefxBbXR-Hw_7nel_tm?usp=sharing) ### Pretraining ``` . ├── pretrained_models │ ├── cascade_mask_rcnn_r18_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5110_segm_mAP_0.4070.pth │ ├── cascade_mask_rcnn_r34_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5190_segm_mAP_0.4140.pth │ └── cascade_mask_rcnn_r50_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5400_segm_mAP_0.4300.pth ``` [download](https://drive.google.com/drive/folders/19BD4totDHtwnHtOqTdn0xYJh7stwYd9l?usp=sharing) ### Training ``` . ├── work_dirs └── fastbev └── exp └── paper └── fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4 │ ├── epoch_20.pth │ ├── latest.pth -> epoch_20.pth │ ├── log.eval.fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.02062323.txt │ └── log.test.fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.02062309.txt ├── fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4 │ ├── epoch_20.pth │ ├── latest.pth -> epoch_20.pth │ ├── log.eval.fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4.02080000.txt │ └── log.test.fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4.02072346.txt ├── fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4 │ ├── epoch_20.pth │ ├── latest.pth -> epoch_20.pth │ ├── log.eval.fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4.02080021.txt │ └── log.test.fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4.02080005.txt ├── fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4 │ ├── epoch_20.pth │ ├── latest.pth -> epoch_20.pth │ ├── log.eval.fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4.02080021.txt │ └── log.test.fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4.02080005.txt └── fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4 ├── epoch_20.pth ├── latest.pth -> epoch_20.pth ├── log.eval.fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4.02080021.txt └── log.test.fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4.02080001.txt ``` [download](https://drive.google.com/drive/folders/1Ja9mqOE0iGPysVxmLSrZyUoCEBYu5fMH?usp=sharing) ### Deployment TODO ## View Transformation Latency on device [2D-to-3D on CUDA & CPU](https://github.com/Sense-GVT/Fast-BEV/tree/dev/script/view_tranform_cuda) ## Citation ``` @article{li2023fast, title={Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline}, author={Li, Yangguang and Huang, Bin and Chen, Zeren and Cui, Yufeng and Liang, Feng and Shen, Mingzhu and Liu, Fenggang and Xie, Enze and Sheng, Lu and Ouyang, Wanli and others}, journal={arXiv preprint arXiv:2301.12511}, year={2023} } ```