# aps2020 **Repository Path**: majianthu/aps2020 ## Basic Information - **Project Name**: aps2020 - **Description**: Code for the paper "Variable Selection with Copula Entropy" published on Chinese Journal of Applied Probability and Statistics - **Primary Language**: Unknown - **License**: GPL-3.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-21 - **Last Updated**: 2023-07-23 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # aps2020 This is the code for the paper 'Variable Selection with Copula Entropy' published on Chinese Journal of Applied Probability and Statistics. The preprint paper is available at [here](https://arxiv.org/abs/1910.12389) on ArXiv. * Ma, Jian. “Variable Selection with Copula Entropy.” Chinese Journal of Applied Probability and Statistics, 2021, 37(4): 405-420. See also arXiv preprint arXiv:1910.12389 (2019). In the paper, three methods for variable selection are compared on the UCI [heart disease data](http://archive.ics.uci.edu/ml/datasets/heart+disease): * Copula Entropy [1], * Hilbert-Schimdt Independence Criterion (HSIC) [2,3], * Distance Correlation [4]. Four additional independence measures are also considered in this version of comparison experiment: * Heller-Heller-Gorfine Tests of Independence [5], * Hoeffding's D test [6], * Bergsma-Dassios T* sign covariance [7], * Ball correlation [8], * BET: Binary Expansion Testing [9], * qad: Quantification of Asymmetric Dependence [10], * MixedIndTests [11], * NNS: Nonlinear Nonparametric Statistics [12]. Copula Entropy does better than all the others measures in terms of predictibility and interpretability. #### References 1. Ma, J., & Sun, Z. (2011). Mutual Information Is Copula Entropy. Tsinghua Science & Technology, 16(1), 51–54. See also arXiv preprint arXiv:0808.0845 (2008). 2. Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2007). A Kernel Statistical Test of Independence. In Advances in Neural Information Processing Systems 20 (Vol. 20, pp. 585–592). 3. Pfister, N., Bühlmann, P., Schölkopf, B., & Peters, J. (2018). Kernel-based Tests for Joint Independence. Journal of The Royal Statistical Society Series B-Statistical Methodology, 80(1), 5–31. 4. Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by correlation of distances. Annals of Statistics, 35(6), 2769–2794. 5. Heller, R., Heller, Y., Kaufman, S., Brill, B., & Gorfine, M. (2016). Consistent distribution-free K-sample and independence tests for univariate random variables. Journal of Machine Learning Research, 17(1), 978–1031. 6. Hoeffding, W. (1948). A Non-Parametric Test of Independence. Annals of Mathematical Statistics, 19(4), 546–557. 7. Bergsma, W., & Dassios, A. (2014). A consistent test of independence based on a sign covariance related to Kendall’s tau. Bernoulli, 20(2), 1006–1028. 8. Wenliang Pan, Xueqin Wang, Heping Zhang, Hongtu Zhu & Jin Zhu (2019). Ball Covariance: A Generic Measure of Dependence in Banach Space. Journal of the American Statistical Association, 115, 307-317. 9. Zhang, K. (2019).BET on Independence. Journal of the American Statistical Association, Taylor & Francis, 114, 1620-1637. 10. Junker, R. R.; Griessenberger, F. & Trutschnig, W. (2021). Estimating scale-invariant directed dependence of bivariate distributions. Computational Statistics & Data Analysis, 153, 107058. 11. Genest, C.; Nešlehová, J. G.; Rémillard, B. & Murphy, O. A. Testing for independence in arbitrary distributions. Biometrika, 2019, 106, 47-68. 12. Viole, Fred and Nawrocki, David N., Deriving Nonlinear Correlation Coefficients from Partial Moments (September 18, 2012). Available at SSRN: https://ssrn.com/abstract=2148522 or http://dx.doi.org/10.2139/ssrn.2148522