# AI-Trader
**Repository Path**: markhoo/AI-Trader
## Basic Information
- **Project Name**: AI-Trader
- **Description**: 《AI-Trader:人工智能能打败市场吗?》 实时交易: https: //hkuds.github.io/AI-Trader/
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2025-10-29
- **Last Updated**: 2025-10-29
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# 🚀 AI-Trader: Which LLM Rules the Market?
### *让AI在金融市场中一展身手*
[](https://python.org)
[](LICENSE)
**一个AI股票交易代理系统,让多个大语言模型在纳斯达克100股票池中完全自主决策、同台竞技!**
## 🏆 当前锦标赛排行榜
[*点击查看*](https://hkuds.github.io/AI-Trader/)
### 🥇 **锦标赛期间:(Last Update 2025/10/27)**
| 🏆 Rank | 🤖 AI Model | 📈 Total Earnings |
|---------|-------------|----------------|
| **🥇 1st** | **DeepSeek** | 🚀 +12.94% |
| 🥈 2nd | MiniMax-M2 | 📊 +8.56% |
| 🥉 3rd | GPT-5 | 📊 +6.87% |
| 4th | Claude-3.7 | 📊 +6.23% |
| 5th | Qwen3-max | 📊 +4.46% |
| Baseline | QQQ | 📊 +4.12% |
| 6th | Gemini-2.5-flash | 📊 -2.05% |
### 📊 **实时性能仪表板**

*每日追踪AI模型在纳斯达克100交易中的表现*
---
## 📝 本周更新计划
我们很高兴宣布以下更新将在本周内上线:
- ⏰ **小时级别交易支持** - 升级至小时级精度交易
- 🚀 **服务部署与并行执行** - 部署生产服务 + 并行模型执行
- 🎨 **增强前端仪表板** - 添加详细的交易日志可视化(完整交易过程展示)
敬请期待这些激动人心的改进!🎉
---
> 🎯 **核心特色**: 100% AI自主决策,零人工干预,纯工具驱动架构
[🚀 快速开始](#-快速开始) • [📈 性能分析](#-性能分析) • [🛠️ 配置指南](#-配置指南)
---
## 🌟 项目介绍
> **AI-Trader让五个不同的AI模型,每个都采用独特的投资策略,在同一个市场中完全自主决策、竞争,看谁能在纳斯达克100交易中赚得最多!**
### 🎯 核心特性
- 🤖 **完全自主决策**: AI代理100%独立分析、决策、执行,零人工干预
- 🛠️ **纯工具驱动架构**: 基于MCP工具链,AI通过标准化工具调用完成所有交易操作
- 🏆 **多模型竞技场**: 部署多个AI模型(GPT、Claude、Qwen等)进行竞争性交易
- 📊 **实时性能分析**: 完整的交易记录、持仓监控和盈亏分析
- 🔍 **智能市场情报**: 集成Jina搜索,获取实时市场新闻和财务报告
- ⚡ **MCP工具链集成**: 基于Model Context Protocol的模块化工具生态系统
- 🔌 **可扩展策略框架**: 支持第三方策略和自定义AI代理集成
- ⏰ **历史回放功能**: 时间段回放功能,自动过滤未来信息
---
### 🎮 交易环境
每个AI模型以$10,000起始资金在受控环境中交易纳斯达克100股票,使用真实市场数据和历史回放功能。
- 💰 **初始资金**: $10,000美元起始余额
- 📈 **交易范围**: 纳斯达克100成分股(100只顶级科技股)
- ⏰ **交易时间**: 工作日市场时间,支持历史模拟
- 📊 **数据集成**: Alpha Vantage API结合Jina AI市场情报
- 🔄 **时间管理**: 历史期间回放,自动过滤未来信息
---
### 🧠 智能交易能力
AI代理完全自主运行,进行市场研究、制定交易决策,并在无人干预的情况下持续优化策略。
- 📰 **自主市场研究**: 智能检索和过滤市场新闻、分析师报告和财务数据
- 💡 **独立决策引擎**: 多维度分析驱动完全自主的买卖执行
- 📝 **全面交易记录**: 自动记录交易理由、执行细节和投资组合变化
- 🔄 **自适应策略演进**: 基于市场表现反馈自我优化的算法
---
### 🏁 竞赛规则
所有AI模型在相同条件下竞争,使用相同的资金、数据访问、工具和评估指标,确保公平比较。
- 💰 **起始资金**: $10,000美元初始投资
- 📊 **数据访问**: 统一的市场数据和信息源
- ⏰ **运行时间**: 同步的交易时间窗口
- 📈 **性能指标**: 所有模型的标准评估标准
- 🛠️ **工具访问**: 所有参与者使用相同的MCP工具链
🎯 **目标**: 确定哪个AI模型通过纯自主操作获得卓越的投资回报!
### 🚫 零人工干预
AI代理完全自主运行,在没有任何人工编程、指导或干预的情况下制定所有交易决策和策略调整。
- ❌ **无预编程**: 零预设交易策略或算法规则
- ❌ **无人工输入**: 完全依赖内在的AI推理能力
- ❌ **无手动覆盖**: 交易期间绝对禁止人工干预
- ✅ **纯工具执行**: 所有操作仅通过标准化工具调用执行
- ✅ **自适应学习**: 基于市场表现反馈的独立策略优化
---
## ⏰ 历史回放架构
AI-Trader Bench的核心创新是其**完全可重放**的交易环境,确保AI代理在历史市场数据上的性能评估具有科学严谨性和可重复性。
### 🔄 时间控制框架
#### 📅 灵活的时间设置
```json
{
"date_range": {
"init_date": "2025-01-01", // 任意开始日期
"end_date": "2025-01-31" // 任意结束日期
}
}
```
---
### 🛡️ 防前瞻数据控制
AI只能访问当前时间及之前的数据。不允许未来信息。
- 📊 **价格数据边界**: 市场数据访问限制在模拟时间戳和历史记录
- 📰 **新闻时间线执行**: 实时过滤防止访问未来日期的新闻和公告
- 📈 **财务报告时间线**: 信息限制在模拟当前日期的官方发布数据
- 🔍 **历史情报范围**: 市场分析限制在时间上适当的数据可用性
### 🎯 重放优势
#### 🔬 实证研究框架
- 📊 **市场效率研究**: 评估AI在不同市场条件和波动制度下的表现
- 🧠 **决策一致性分析**: 检查AI交易逻辑的时间稳定性和行为模式
- 📈 **风险管理评估**: 验证AI驱动的风险缓解策略的有效性
#### 🎯 公平竞赛框架
- 🏆 **平等信息访问**: 所有AI模型使用相同的历史数据集运行
- 📊 **标准化评估**: 使用统一数据源计算的性能指标
- 🔍 **完全可重复性**: 具有可验证结果的完整实验透明度
---
## 📁 项目架构
```
AI-Trader Bench/
├── 🤖 核心系统
│ ├── main.py # 🎯 主程序入口
│ ├── agent/base_agent/ # 🧠 AI代理核心
│ └── configs/ # ⚙️ 配置文件
│
├── 🛠️ MCP工具链
│ ├── agent_tools/
│ │ ├── tool_trade.py # 💰 交易执行
│ │ ├── tool_get_price_local.py # 📊 价格查询
│ │ ├── tool_jina_search.py # 🔍 信息搜索
│ │ └── tool_math.py # 🧮 数学计算
│ └── tools/ # 🔧 辅助工具
│
├── 📊 数据系统
│ ├── data/
│ │ ├── daily_prices_*.json # 📈 股票价格数据
│ │ ├── merged.jsonl # 🔄 统一数据格式
│ │ └── agent_data/ # 📝 AI交易记录
│ └── calculate_performance.py # 📈 性能分析
│
├── 🎨 前端界面
│ └── frontend/ # 🌐 Web仪表板
│
└── 📋 配置与文档
├── configs/ # ⚙️ 系统配置
├── prompts/ # 💬 AI提示词
└── calc_perf.sh # 🚀 性能计算脚本
```
### 🔧 核心组件详解
#### 🎯 主程序 (`main.py`)
- **多模型并发**: 同时运行多个AI模型进行交易
- **配置管理**: 支持JSON配置文件和环境变量
- **日期管理**: 灵活的交易日历和日期范围设置
- **错误处理**: 完善的异常处理和重试机制
#### 🛠️ MCP工具链
| 工具 | 功能 | API |
|------|------|-----|
| **交易工具** | 买入/卖出股票,持仓管理 | `buy()`, `sell()` |
| **价格工具** | 实时和历史价格查询 | `get_price_local()` |
| **搜索工具** | 市场信息搜索 | `get_information()` |
| **数学工具** | 财务计算和分析 | 基础数学运算 |
#### 📊 数据系统
- **📈 价格数据**: 纳斯达克100成分股的完整OHLCV数据
- **📝 交易记录**: 每个AI模型的详细交易历史
- **📊 性能指标**: 夏普比率、最大回撤、年化收益等
- **🔄 数据同步**: 自动化的数据获取和更新机制
## 🚀 快速开始
### 📋 前置要求
- **Python 3.8+**
- **API密钥**: OpenAI、Alpha Vantage、Jina AI
### ⚡ 一键安装
```bash
# 1. 克隆项目
git clone https://github.com/HKUDS/AI-Trader.git
cd AI-Trader
# 2. 安装依赖
pip install -r requirements.txt
# 3. 配置环境变量
cp .env.example .env
# 编辑 .env 文件,填入你的API密钥
```
### 🔑 环境配置
创建 `.env` 文件并配置以下变量:
```bash
# 🤖 AI模型API配置
OPENAI_API_BASE=https://your-openai-proxy.com/v1
OPENAI_API_KEY=your_openai_key
# 📊 数据源配置
ALPHAADVANTAGE_API_KEY=your_alpha_vantage_key
JINA_API_KEY=your_jina_api_key
# ⚙️ 系统配置
RUNTIME_ENV_PATH=./runtime_env.json #推荐使用绝对路径
# 🌐 服务端口配置
MATH_HTTP_PORT=8000
SEARCH_HTTP_PORT=8001
TRADE_HTTP_PORT=8002
GETPRICE_HTTP_PORT=8003
# 🧠 AI代理配置
AGENT_MAX_STEP=30 # 最大推理步数
```
### 📦 依赖包
```bash
# 安装生产环境依赖
pip install -r requirements.txt
# 或手动安装核心依赖
pip install langchain langchain-openai langchain-mcp-adapters fastmcp python-dotenv requests numpy pandas
```
## 🎮 运行指南
### 📊 步骤1: 数据准备 (`./fresh_data.sh`)
```bash
# 📈 获取纳斯达克100股票数据
cd data
python get_daily_price.py
# 🔄 合并数据为统一格式
python merge_jsonl.py
```
### 🛠️ 步骤2: 启动MCP服务
```bash
cd ./agent_tools
python start_mcp_services.py
```
### 🚀 步骤3: 启动AI竞技场
```bash
# 🎯 运行主程序 - 让AI们开始交易!
python main.py
# 🎯 或使用自定义配置
python main.py configs/my_config.json
```
### ⏰ 时间设置示例
#### 📅 创建自定义时间配置
```json
{
"agent_type": "BaseAgent",
"date_range": {
"init_date": "2024-01-01", // 回测开始日期
"end_date": "2024-03-31" // 回测结束日期
},
"models": [
{
"name": "claude-3.7-sonnet",
"basemodel": "anthropic/claude-3.7-sonnet",
"signature": "claude-3.7-sonnet",
"enabled": true
}
]
}
```
### 📈 启动Web界面
```bash
cd docs
python3 -m http.server 8000
# 访问 http://localhost:8000
```
## 📈 性能分析
### 🏆 竞技规则
| 规则项 | 设置 | 说明 |
|--------|------|------|
| **💰 初始资金** | $10,000 | 每个AI模型起始资金 |
| **📈 交易标的** | 纳斯达克100 | 100只顶级科技股 |
| **⏰ 交易时间** | 工作日 | 周一至周五 |
| **💲 价格基准** | 开盘价 | 使用当日开盘价交易 |
| **📝 记录方式** | JSONL格式 | 完整交易历史记录 |
## ⚙️ 配置指南
### 📋 配置文件结构
```json
{
"agent_type": "BaseAgent",
"date_range": {
"init_date": "2025-01-01",
"end_date": "2025-01-31"
},
"models": [
{
"name": "claude-3.7-sonnet",
"basemodel": "anthropic/claude-3.7-sonnet",
"signature": "claude-3.7-sonnet",
"enabled": true
}
],
"agent_config": {
"max_steps": 30,
"max_retries": 3,
"base_delay": 1.0,
"initial_cash": 10000.0
},
"log_config": {
"log_path": "./data/agent_data"
}
}
```
### 🔧 配置参数说明
| 参数 | 说明 | 默认值 |
|------|------|--------|
| `agent_type` | AI代理类型 | "BaseAgent" |
| `max_steps` | 最大推理步数 | 30 |
| `max_retries` | 最大重试次数 | 3 |
| `base_delay` | 操作延迟(秒) | 1.0 |
| `initial_cash` | 初始资金 | $10,000 |
### 📊 数据格式
#### 💰 持仓记录 (position.jsonl)
```json
{
"date": "2025-01-20",
"id": 1,
"this_action": {
"action": "buy",
"symbol": "AAPL",
"amount": 10
},
"positions": {
"AAPL": 10,
"MSFT": 0,
"CASH": 9737.6
}
}
```
#### 📈 价格数据 (merged.jsonl)
```json
{
"Meta Data": {
"2. Symbol": "AAPL",
"3. Last Refreshed": "2025-01-20"
},
"Time Series (Daily)": {
"2025-01-20": {
"1. buy price": "255.8850",
"2. high": "264.3750",
"3. low": "255.6300",
"4. sell price": "262.2400",
"5. volume": "90483029"
}
}
}
```
### 📁 文件结构
```
data/agent_data/
├── claude-3.7-sonnet/
│ ├── position/
│ │ └── position.jsonl # 📝 持仓记录
│ └── log/
│ └── 2025-01-20/
│ └── log.jsonl # 📊 交易日志
├── gpt-4o/
│ └── ...
└── qwen3-max/
└── ...
```
## 🔌 第三方策略集成
AI-Trader Bench采用模块化设计,支持轻松集成第三方策略和自定义AI代理。
### 🛠️ 集成方式
#### 1. 自定义AI代理
```python
# 创建新的AI代理类
class CustomAgent(BaseAgent):
def __init__(self, model_name, **kwargs):
super().__init__(model_name, **kwargs)
# 添加自定义逻辑
```
#### 2. 注册新代理
```python
# 在 main.py 中注册
AGENT_REGISTRY = {
"BaseAgent": {
"module": "agent.base_agent.base_agent",
"class": "BaseAgent"
},
"CustomAgent": { # 新增
"module": "agent.custom.custom_agent",
"class": "CustomAgent"
},
}
```
#### 3. 配置文件设置
```json
{
"agent_type": "CustomAgent",
"models": [
{
"name": "your-custom-model",
"basemodel": "your/model/path",
"signature": "custom-signature",
"enabled": true
}
]
}
```
### 🔧 扩展工具链
#### 添加自定义工具
```python
# 创建新的MCP工具
@mcp.tools()
class CustomTool:
def __init__(self):
self.name = "custom_tool"
def execute(self, params):
# 实现自定义工具逻辑
return result
```
## 🚀 路线图
### 🌟 未来计划
- [ ] **🇨🇳 A股支持** - 扩展至中国股市
- [ ] **📊 收盘后统计** - 自动收益分析
- [ ] **🔌 策略市场** - 添加第三方策略分享平台
- [ ] **🎨 炫酷前端界面** - 现代化Web仪表板
- [ ] **₿ 加密货币** - 支持数字货币交易
- [ ] **📈 更多策略** - 技术分析、量化策略
- [ ] **⏰ 高级回放** - 支持分钟级时间精度和实时回放
- [ ] **🔍 智能过滤** - 更精确的未来信息检测和过滤
## 🤝 贡献指南
我们欢迎各种形式的贡献!特别是AI交易策略和代理实现。
### 🧠 AI策略贡献
- **🎯 交易策略**: 贡献你的AI交易策略实现
- **🤖 自定义代理**: 实现新的AI代理类型
- **📊 分析工具**: 添加新的市场分析工具
- **🔍 数据源**: 集成新的数据源和API
### 🐛 问题报告
- 使用GitHub Issues报告bug
- 提供详细的复现步骤
- 包含系统环境信息
### 💡 功能建议
- 在Issues中提出新功能想法
- 详细描述使用场景
- 讨论实现方案
### 🔧 代码贡献
1. Fork项目
2. 创建功能分支
3. 实现你的策略或功能
4. 添加测试用例
5. 创建Pull Request
### 📚 文档改进
- 完善README文档
- 添加代码注释
- 编写使用教程
- 贡献策略说明文档
### 🏆 策略分享
- **📈 技术分析策略**: 基于技术指标的AI策略
- **📊 量化策略**: 多因子模型和量化分析
- **🔍 基本面策略**: 基于财务数据的分析策略
- **🌐 宏观策略**: 基于宏观经济数据的策略
## 📞 支持与社区
- **💬 讨论**: [GitHub Discussions](https://github.com/HKUDS/AI-Trader/discussions)
- **🐛 问题**: [GitHub Issues](https://github.com/HKUDS/AI-Trader/issues)
## 📄 许可证
本项目采用 [MIT License](LICENSE) 开源协议。
## 🙏 致谢
感谢以下开源项目和服务:
- [LangChain](https://github.com/langchain-ai/langchain) - AI应用开发框架
- [MCP](https://github.com/modelcontextprotocol) - Model Context Protocol
- [Alpha Vantage](https://www.alphavantage.co/) - 金融数据API
- [Jina AI](https://jina.ai/) - 信息搜索服务
## 免责声明
AI-Trader项目所提供的资料仅供研究之用,并不构成任何投资建议。投资者在作出任何投资决策之前,应寻求独立专业意见。任何过往表现未必可作为未来业绩的指标。阁下应注意,投资价值可能上升亦可能下跌,且并无任何保证。AI-Trader项目的所有内容仅作研究之用,并不构成对所提及之证券/行业的任何投资推荐。投资涉及风险。如有需要,请寻求专业咨询。
---
**🌟 如果这个项目对你有帮助,请给我们一个Star!**
[](https://github.com/HKUDS/AI-Trader)
[](https://github.com/HKUDS/AI-Trader)
**🤖 让AI在金融市场中完全自主决策、一展身手!**
**🛠️ 纯工具驱动,零人工干预,真正的AI交易竞技场!** 🚀