# Learn-LLM-Easily **Repository Path**: marten98/Learn-LLM-Easily ## Basic Information - **Project Name**: Learn-LLM-Easily - **Description**: 轻松学系列之: 轻松学习LLM大语言模型 - **Primary Language**: Python - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 6 - **Created**: 2024-12-04 - **Last Updated**: 2025-09-05 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # 轻松学习大模型
## 项目概览 **本项目是一个轻松学习大模型的教程,主要内容包括:** 1. **Transformer算法解析**,这一部分将带你深入了解Transformer架构的核心理念和技术细节,包括自注意力机制、前馈神经网络、多头注意力等关键组件,以及它们如何协同工作以处理序列数据。 2. **开源大模型的本地化部署**,这里会教授如何选择合适的开源大模型,并详细介绍在本地环境中部署这些模型的方法,包括环境配置、模型下载、运行测试等步骤,确保你能顺利将模型应用于实际场景中。 3. **如何优化大模型**,这部分内容聚焦于提升大模型性能的各种策略,涵盖模型提示词工程、微调等技术,以及如何根据具体应用场景调整模型参数,以达到最佳效果。 4. **开发大模型的应用**,最后,我们将探索如何利用大模型解决实际问题,包括但不限于ChatBot、Copilot、Agent等任务,使大模型能够更好地服务于业务需求。 ## 必读论文清单 已将 **"Scaling Laws for Neural Language Models"** 加入到之前的论文清单中。更新后的清单如下: --- ### **基础理论与模型架构** 1. **Attention Is All You Need** - [arXiv link](https://arxiv.org/abs/1706.03762) 2. **BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding** - [arXiv link](https://arxiv.org/abs/1810.04805) 3. **GPT: Improving Language Understanding by Generative Pre-training** - [arXiv link](https://arxiv.org/abs/1801.06146) 4. **T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer** - [arXiv link](https://arxiv.org/abs/1910.10683) 5. **XLNet: Generalized Autoregressive Pretraining for Language Understanding** - [arXiv link](https://arxiv.org/abs/1906.08237) --- ### **规模化与性能优化** 6. **Language Models Are Few-Shot Learners** - [arXiv link](https://arxiv.org/abs/2005.14165) 7. **Scaling Laws for Neural Language Models** - [arXiv link](https://arxiv.org/abs/2001.08361) 8. **Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity** - [arXiv link](https://arxiv.org/abs/2101.03961) 9. **LoRA: Low-Rank Adaptation of Large Language Models** - [arXiv link](https://arxiv.org/abs/2106.09685) --- ### **强化学习与对齐** 10. **Learning to Summarize with Human Feedback** - [arXiv link](https://arxiv.org/abs/2009.01325) 11. **Training Language Models to Follow Instructions with Human Feedback** - [arXiv link](https://arxiv.org/abs/2203.02155) --- ### **应用与安全** 12. **PaLM-E: An Embodied Multimodal Language Model** - [arXiv link](https://arxiv.org/abs/2305.00735) 13. **Flamingo: A Visual Language Model for Few-Shot Learning** - [arXiv link](https://arxiv.org/abs/2204.14198) 14. **Towards a Human-like Open-Domain Chatbot** - [arXiv link](https://arxiv.org/abs/2001.09977) 15. **Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned** - [arXiv link](https://arxiv.org/abs/2207.03508) --- ### **未来发展与理论探讨** 16. **Emergent Abilities of Large Language Models** - [arXiv link](https://arxiv.org/abs/2205.11916) 17. **Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks** - [arXiv link](https://arxiv.org/abs/2005.11401) ---