# CUDA-kdtree **Repository Path**: master/CUDA-kdtree ## Basic Information - **Project Name**: CUDA-kdtree - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-24 - **Last Updated**: 2024-01-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # CUDA-kdtree ## Table of Contents - [Introduction](#introduction) - [Dependencies](#dependencies) - [Installation](#installation) - [Documentation](#documentation) ## Introduction CUDA-kdtree, as the project name implies, implements GPU-based KD-tree algorithm, which is described in this paper: [Real-Time KD-Tree Construction on Graphics Hardware. K. Zhou, Q. Hou, R. Wang, B. Guo](http://www.cad.zju.edu.cn/home/rwang/publication/08kdtree.pdf). ## Dependencies - [CMake > v3.17]() - [GLEW](http://glew.sourceforge.net/) - [GLFW](https://www.glfw.org/](https://www.glfw.org/)) - [GLM > 0.9.2](https://glm.g-truc.net/0.9.9/index.html) - [Doxygen](https://www.doxygen.nl/index.html) - [CUDA Toolkit](https://docs.nvidia.com/cuda/index.html) ## Optional dependencies ## Installation ### Linux Tested on Ubuntu 20.04 1. Navigate to the directory where you want the repository to be installed using the command line 2. ```git clone https://github.com/ChinYing-Li/ClusterEngine.git``` 3. ```cd ClusterEngine``` 4. ```mkdir build``` 5. ```cd build``` 6. ```cmake ..``` 7. ```make``` ### Windows Tested on Windows 10 TO BE UPDATED ## Documentation TO BE UPDATED