# Logic-RL **Repository Path**: math345/Logic-RL ## Basic Information - **Project Name**: Logic-RL - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-10 - **Last Updated**: 2025-02-10 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Logic Rl ## 🎉 **Successfully reproduced DeepSeek R1 Zero on 2K Logic Puzzle Dataset.** ## 📢 **Our detailed technical report is coming soon! Stay tuned!** See project explanation : [here](https://evxpwrsfkdb.feishu.cn/docx/NokEdaMBmo6aqZxVdxkcSm2cnab?from=from_copylink). Wandb project : [here](https://wandb.ai/ustc_ai/GRPO_logic_KK/reports/GRPO-Zero--VmlldzoxMTIwOTYyNw?accessToken=gnbnl5mu5pwfww7gtwxymohg85w7d7vthvjvbl4w8yxg0a99vf1k22m11e61cvv8). --- ## Enhanced Features (After Rule-Based RL) | 🚩 Uncertainty Marking | 📝 Progressive Summarization | ✅ Self Verification | 🌐 Multilingual Switching | |------------------------|-----------------------------|---------------------|--------------------------| | Flag ambiguous steps for verification | Maintain intermediate conclusions | First verify then answer | Chinese reasoning traces with English answers | --- ## 📸 Results Preview
Test Score Output Length
Test Score Plot Average Output Length Plot
Model Output
Model Output Example
--- ## Benchmark | Model | 2ppl | 3ppl | 4ppl | 5ppl | 6ppl | 7ppl | 8ppl | |------------------------------------------------------------------------|------|------|------|------|------|------|------| | o1-2024-12-17 | 0.83 | 0.51 | 0.38 | 0.38 | 0.35 | 0.30 | 0.20 | | GPT-4o | 0.68 | 0.57 | 0.49 | 0.32 | 0.23 | 0.21 | 0.11 | | Deepseek-Math-7b | 0.35 | 0.21 | 0.08 | 0.06 | 0.02 | 0.00 | 0.00 | | Qwen2.5-7B-Instruct-1M | 0.49 | 0.40 | 0.25 | 0.11 | 0.02 | 0.06 | 0.01 | | Qwen2.5-7B-Logic-RL (ours) | 0.68 | 0.59 | 0.44 | 0.34 | 0.22 | 0.16 | 0.15 | Our model only used 2K training data with 400 training steps. More model benchmarks will be updated later this week. --- ## 🛠️ Installation ```bash conda create -n logic python=3.9 pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121 pip3 install vllm==0.6.3 ray pip3 install flash-attn --no-build-isolation pip install -e . # For verl integration pip install wandb IPython matplotlib ``` --- ## Data Preparation You can directly use /data. For your own data generation, here's a demo: ### Base Model ```bash python ./examples/data_preprocess/kk.py \ --local_dir {processed_data_path} \ --data_path {raw_data_path} ``` ### Instruct Model ```bash python ./examples/data_preprocess/kk.py \ --template_type=qwen-instruct \ --local_dir {processed_data_path} \ --data_path {raw_data_path} ``` --- ## Training Execution ```bash conda activate logic bash main_grpo.sh # 4×A100 80G ``` --- ## ⚙️ Implementation Details | Component | Location | |------------------------|-----------------------------------| | Reward Modeling | `verl/utils/reward_score/kk.py` | | Data Preprocessing | `examples/data_preprocess/kk.py` | --- ## Citation ``` @misc{logic-rl, author = {Tian Xie and Qingnan Ren and Yuqian Hong and Zitian Gao}, title = {Logic-RL}, howpublished = {https://github.com/Unakar/Logic-RL}, note = {Accessed: 2025-02-03}, year = {2025} } ``` --- ## Acknowledgements - [Verl](https://github.com/volcengine/verl) 🔗 - [TinyZero](https://github.com/Jiayi-Pan/TinyZero) 🔗 - [Knights and Knaves (K&K) puzzles dataset](https://github.com/AlphaPav/mem-kk-logic) 🔗 --- ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=Unakar/Logic-RL&type=Date)](https://star-history.com/#Unakar/Logic-RL&Date)