# ImageDehazing **Repository Path**: mathematicsX/ImageDehazing ## Basic Information - **Project Name**: ImageDehazing - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-04-19 - **Last Updated**: 2021-11-03 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # ImageDehazing ## MIT Final Year project ### [NoteBook's Link](https://nbviewer.jupyter.org/github/abubakrsiddq/ImageDehazing/tree/main/) ## Comparision of present models
Metrics LCA DehazeNet(40) Dhz_Att DCP GMAN GCA(30) FFA(10) U-net
PSNR 17.072 17.23 17.00 12.21 14.8 20.13 20.67 19.38
SSIM 0.65 0.66 0.67 0.61 0.64 0.77 0.79 0.73
FADE 0.9542 0.500 0.87 0.3883 0.645 0.91 1.24 0.68
NQIE 4.42 2.93 3.12 2.847 2.70 2.7 2.67 3.71
CEIQ 3.27 3.33 3.25 3.19 3.22 3.22 3.42 3.4
BLIINDS2 49.69 23.5 35.5 17.39 26.42 27.5 24.4 39.11

TIMELINE

WEEK 1

Studied literature of dehazing, paper on DCP, dehazenet, BPP, GCA, FFA,etc

WEEK 2

Implemented a dataset loader and implemented some preprocessing technique. Wrote code for DCP and dehaze net from research paper.

WEEK 3

Started developing basic architecture based on simple networks such as LCA and wrote code for GCA, GMAN, dehazenet.

WEEK 4

Compare different models based on NR IQA methods such as FADE, NQIE, BLIINDS, CEIQ. Wrote code in matlab to generate the output of the models on ohaze dataset.

#### Tasks - [x] DCP - [x] Dehazenet model - [x] GCA code - [x] Dataset Loader script - [x] DeHazeNet Training - [x] [Make Presentation](https://docs.google.com/presentation/d/183MUhIXfW0YKWMM8UqMhUjYGpJbU1W6hkctT-o8tyxo/edit?usp=sharing) - [x] Metrics compare - [ ] choose base model