# NLP-Tutorials **Repository Path**: mcgrady164/NLP-Tutorials ## Basic Information - **Project Name**: NLP-Tutorials - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-08-01 - **Last Updated**: 2021-08-01 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Natural Language Processing Tutorial Tutorial in Chinese can be found in [mofanpy.com](https://mofanpy.com/tutorials/machine-learning/nlp/). This repo includes many simple implementations of models in Neural Language Processing (NLP). All code implementations in this tutorial are organized as following: 1. Search Engine - [TF-IDF numpy / TF-IDF skearn](#TF-IDF) 2. Understand Word (W2V) - [Continuous Bag of Words (CBOW)](#Word2Vec) - [Skip-Gram](#Word2Vec) 3. Understand Sentence (Seq2Seq) - [seq2seq](#Seq2Seq) - [CNN language model](#CNNLanguageModel) 4. All about Attention - [seq2seq with attention](#Seq2SeqAttention) - [Transformer](#Transformer) 5. Pretrained Models - [ELMo](#ELMO) - [GPT](#GPT) - [BERT](#BERT) Thanks for the contribution made by [@W1Fl](https://github.com/W1Fl) with a simplified keras codes in [simple_realize](simple_realize). And the a [pytorch version of this NLP](/pytorch) tutorial made by [@ruifanxu](https://github.com/ruifan831). ## Installation ```shell script $ git clone https://github.com/MorvanZhou/NLP-Tutorials $ cd NLP-Tutorials/ $ sudo pip3 install -r requirements.txt ``` ## TF-IDF TF-IDF numpy [code](tf_idf.py) TF-IDF short sklearn [code](tf_idf_sklearn.py) image ## Word2Vec [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf) Skip-Gram [code](skip-gram.py) CBOW [code](CBOW.py) image image image ## Seq2Seq [Sequence to Sequence Learning with Neural Networks](https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf) Seq2Seq [code](seq2seq.py) image ## CNNLanguageModel [Convolutional Neural Networks for Sentence Classification](https://arxiv.org/pdf/1408.5882.pdf) CNN language model [code](cnn-lm.py) image ## Seq2SeqAttention [Effective Approaches to Attention-based Neural Machine Translation](https://arxiv.org/pdf/1508.04025.pdf) Seq2Seq Attention [code](seq2seq_attention.py) image image ## Transformer [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf) Transformer [code](transformer.py) image image image ## ELMO [Deep contextualized word representations](https://arxiv.org/pdf/1802.05365.pdf) ELMO [code](ELMo.py) image image ## GPT [Improving Language Understanding by Generative Pre-Training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) GPT [code](GPT.py) image image ## BERT [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/pdf/1810.04805.pdf) BERT [code](BERT.py) My new attempt [Bert with window mask](BERT_window_mask.py) image image