This project develops security software components running on Kunpeng processors, specifically focusing on trusted computing related software components such as remote attestation client and service, etc.
This project develops security software components running on Kunpeng processors, specifically focusing on trusted computing related software components such as remote attestation client and service, etc.
MalNPMDetector 是一款专为 npm 软件包设计的恶意包检测系统。该系统采用高效的静态规则匹配,能够在大规模数据集中快速筛选出可疑的恶意包和混淆软件包。随后,通过基于字符串的污点分析进一步精确筛查,从初步筛选的可疑软件包中缩小范围。整个流程无需运行 npm 软件包,即可高效识别潜在威胁,从而防止恶意包污染 npm 软件供应链。
It includes ontology learning for Competency questions (CQ) and heterogeneous input from multiple sources, and has a complete front-end user interface. CQ can be used to generate ontology validation.
基于(https://github.com/ufrisk/MemProcFS)实现的内存可视化分析软件,能够基于dma技术直接获取设备的物理内存并进行解析、直观的分析内存数据并尝试检测潜在的恶意代码信息
针对Android应用的隐私合规审查工具
最近一年贡献:30 次
最长连续贡献:5 日
最近连续贡献:1 日
贡献度的统计数据包括代码提交、创建任务 / Pull Request、合并 Pull Request,其中代码提交的次数需本地配置的 git 邮箱是 Gitee 帐号已确认绑定的才会被统计。