diff --git a/docs/mindspore/source_zh_cn/model_infer/ms_infer/model_export.md b/docs/mindspore/source_zh_cn/model_infer/ms_infer/model_export.md index c10c0e112a086b057c8aa9a144e91edeaec33227..b500148d51c751d56bba6db859d38f7f1859ede7 100644 --- a/docs/mindspore/source_zh_cn/model_infer/ms_infer/model_export.md +++ b/docs/mindspore/source_zh_cn/model_infer/ms_infer/model_export.md @@ -1,3 +1,22 @@ # 模型导出 [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/model_infer/ms_infer/model_export.md) + +MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation, IR)。可使用export接口直接将模型保存为MindIR(当前仅支持严格图模式)。 + +```python +import mindspore as ms +import numpy as np +from mindspore import Tensor + +# Define the network structure of LeNet5. Refer to +# https://gitee.com/mindspore/docs/blob/r2.3.1/docs/mindspore/code/lenet.py +net = LeNet5() +input_tensor = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)) +ms.export(net, input_tensor, file_name='lenet', file_format='MINDIR') + +``` + +详细接口参考链接:[mindspore.export](https://www.mindspore.cn/docs/zh-CN/r2.3.1/api_python/mindspore/mindspore.export.html?highlight=export#mindspore.export)。 + +模型导出结果提供给MindSpore Lite使用,使用方式可参考[使用Python接口执行云侧推理](https://www.mindspore.cn/lite/docs/zh-CN/r2.3.1/use/cloud_infer/runtime_python.html)。 diff --git a/docs/mindspore/source_zh_cn/model_infer/ms_infer/profiling.md b/docs/mindspore/source_zh_cn/model_infer/ms_infer/profiling.md index a613dc7935d38e07cee423e4af6d9ae7adc52f2b..4c4cc850f1f9573e423662a00a88539d9f9951a9 100644 --- a/docs/mindspore/source_zh_cn/model_infer/ms_infer/profiling.md +++ b/docs/mindspore/source_zh_cn/model_infer/ms_infer/profiling.md @@ -1,3 +1,32 @@ # Profiling [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/model_infer/ms_infer/profiling.md) + +MindSpore中提供了profiler接口,可以对神经网络的性能进行采集。目前支持AICORE算子、AICPU算子、HostCPU算子、内存、设备通信、集群等数据的分析。 + +样例: + +```python +import numpy as np +import mindspore +from mindspore import Tensor +from mindspore.train import Model +from mindspore import Profiler + +input_data = Tensor(np.random.randint(0, 255, [1, 1, 32, 32]), mindspore.float32) +# Define the network structure of LeNet5. Refer to +# https://gitee.com/mindspore/docs/blob/r2.3.1/docs/mindspore/code/lenet.py +# Init Profiler +# Note that the Profiler should be initialized before model.predict +profiler = Profiler() +model = Model(LeNet5()) +result = model.predict(input_data) + +# Profiler end +profiler.analyse() + +``` + +推理方面性能调试方式与训练基本一致,收集到性能数据后,可参考:[性能调试(Ascend)](https://www.mindspore.cn/mindinsight/docs/zh-CN/master/performance_profiling_ascend.html)进行性能分析。推理上重点关注算子性能分析、计算量性能分析、Timeline分析等。 + +详细接口参考:[mindspore.Profiler](https://www.mindspore.cn/docs/zh-CN/r2.3.1/api_python/mindspore/mindspore.Profiler.html?highlight=profiler#mindspore.Profiler)。