diff --git a/docs/programming_guide/source_zh_cn/dtype.md b/docs/programming_guide/source_zh_cn/dtype.md
index 5fc7d208e65aed905222fe79b2ca6530a04f5fdc..1cbdbdee84da420757130e1b5cfb339352ede12a 100644
--- a/docs/programming_guide/source_zh_cn/dtype.md
+++ b/docs/programming_guide/source_zh_cn/dtype.md
@@ -9,6 +9,8 @@
+
+
## 概述
diff --git a/docs/programming_guide/source_zh_cn/operator.md b/docs/programming_guide/source_zh_cn/operator.md
index 588d3a4314412f544695fe619cb26c9116bc60f1..514f1c8b69ba6d7bd8c7a204965d038d3d607d80 100644
--- a/docs/programming_guide/source_zh_cn/operator.md
+++ b/docs/programming_guide/source_zh_cn/operator.md
@@ -16,7 +16,6 @@
- [求三角函数](#求三角函数)
- [向量运算](#向量运算)
- [Squeeze](#squeeze)
- - [求Sparse2Dense](#求sparse2dense)
- [矩阵运算](#矩阵运算)
- [矩阵乘法](#矩阵乘法)
- [广播机制](#广播机制)
@@ -187,7 +186,7 @@ scalar 3
import numpy as np
import mindspore
from mindspore import Tensor
-import mindspore.ops.operations as P
+
input_x = mindspore.Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
input_y = 3.0
print(input_x**input_y)
@@ -277,30 +276,6 @@ print(output)
[1. 1.]
[1. 1.]]
```
-#### 求Sparse2Dense
-
-以下代码实现了对Sparse2Dense示例:
-```python
-import numpy as np
-import mindspore as ms
-from mindspore import Tensor
-import mindspore.ops.operations as P
-
-indices = Tensor([[0, 1], [1, 2]])
-values = Tensor([1, 2], dtype=ms.float32)
-dense_shape = (3, 4)
-out = P.SparseToDense()(indices, values, dense_shape)
-
-print(out)
-```
-
-输出如下:
-```
-[[0, 1, 0, 0],
- [0, 0, 2, 0],
- [0, 0, 0, 0]]
-```
-
### 矩阵运算
矩阵运算包括矩阵乘法、矩阵范数、矩阵行列式、矩阵求特征值、矩阵分解等运算。
@@ -453,8 +428,6 @@ print(res)
#### LossFunction
- L1Loss
-
以下代码实现了L1 loss function:
```python
from mindspore import Tensor
@@ -476,8 +449,6 @@ print(res)
#### 优化算法
- SGD
-
以下代码实现了SGD梯度下降算法的具体实现,输出是result:
```python
from mindspore import Tensor
diff --git a/docs/programming_guide/source_zh_cn/tensor.md b/docs/programming_guide/source_zh_cn/tensor.md
index b7a6196404b7942b7bc978c6d20c01e2b1099bb5..1d8b36f592ecf2a0532130cfeb3c788e1ade492f 100644
--- a/docs/programming_guide/source_zh_cn/tensor.md
+++ b/docs/programming_guide/source_zh_cn/tensor.md
@@ -12,6 +12,8 @@
+
+
## 概述
diff --git a/tutorials/notebook/programming_guide/dtype.ipynb b/tutorials/notebook/programming_guide/dtype.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3a4d47dcde38c12b1135570924e2bd0c2f623c31
--- /dev/null
+++ b/tutorials/notebook/programming_guide/dtype.ipynb
@@ -0,0 +1,111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# dtype"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 概述\n",
+ "\n",
+ "MindSpore张量支持不同的数据类型,包含`int8`、`int16`、`int32`、`int64`、`uint8`、`uint16`、`uint32`、`uint64`、`float16`、`float32`、`float64`、`bool_`,与NumPy的数据类型一一对应。\n",
+ "\n",
+ "在MindSpore的运算处理流程中,Python中的`int`数会被转换为定义的`int64`类型,`float`数会被转换为定义的`float32`类型。\n",
+ "\n",
+ "详细的类型支持情况请参考https://www.mindspore.cn/doc/api_python/zh-CN/master/mindspore/mindspore.html#mindspore.dtype。\n",
+ "\n",
+ "以下代码,打印MindSpore的数据类型int32。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Int32\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mindspore import dtype as mstype\n",
+ "\n",
+ "data_type = mstype.int32\n",
+ "print(data_type)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 数据类型转换接口\n",
+ "\n",
+ "MindSpore提供了以下几个接口,实现与NumPy数据类型和Python内置的数据类型间的转换。\n",
+ "\n",
+ " * `dtype_to_nptype`:将MindSpore的数据类型转换为NumPy对应的数据类型。\n",
+ "\n",
+ " * `dtype_to_pytype`:将MindSpore的数据类型转换为Python对应的内置数据类型。\n",
+ "\n",
+ " * `pytype_to_dtype`:将Python内置的数据类型转换为MindSpore对应的数据类型。\n",
+ "\n",
+ "以下代码实现了不同数据类型间的转换,并打印转换后的类型。"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Int64\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mindspore import dtype as mstype\n",
+ "\n",
+ "np_type = mstype.dtype_to_nptype(mstype.int32)\n",
+ "ms_type = mstype.pytype_to_dtype(int)\n",
+ "py_type = mstype.dtype_to_pytype(mstype.float64)\n",
+ "\n",
+ "print(np_type)\n",
+ "print(ms_type)\n",
+ "print(py_type)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/tutorials/notebook/programming_guide/tensor.ipynb b/tutorials/notebook/programming_guide/tensor.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fc4e13fb3dfae27a4f0996aefcf31a15fd7be21f
--- /dev/null
+++ b/tutorials/notebook/programming_guide/tensor.ipynb
@@ -0,0 +1,149 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Tensor"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 概述\n",
+ "\n",
+ "张量(Tensor)是MindSpore网络运算中的基本数据结构。张量中的数据类型可参考[dtype](https://www.mindspore.cn/doc/programming_guide/zh-CN/master/dtype.html)。\n",
+ "\n",
+ "不同维度的张量分别表示不同的数据,0维张量表示标量,1维张量表示向量,2维张量表示矩阵,3维张量可以表示彩色图像的RGB三通道等等。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> 本文中的所有示例,支持在PyNative模式下运行,暂不支持CPU。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 张量构造\n",
+ "\n",
+ "构造张量时,支持传入`Tensor`、`float`、`int`、`bool`、`tuple`、`list`和`NumPy.array`类型。\n",
+ "\n",
+ "`Tensor`作为初始值时,可指定dtype,如果没有指定dtype,`int`、`float`、`bool`分别对应`int32`、`float32`、`bool_`,`tuple`和`list`生成的1维`Tensor`数据类型与`tuple`和`list`里存放数据的类型相对应。\n",
+ "\n",
+ "代码样例如下:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[1 2]\n",
+ " [3 4]] \n",
+ "\n",
+ " 1 \n",
+ "\n",
+ " 2 \n",
+ "\n",
+ " True \n",
+ "\n",
+ " [1 2 3] \n",
+ "\n",
+ " [4. 5. 6.]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "from mindspore import Tensor\n",
+ "from mindspore.common import dtype as mstype\n",
+ "\n",
+ "x = Tensor(np.array([[1, 2], [3, 4]]), mstype.int32)\n",
+ "y = Tensor(1.0, mstype.int32)\n",
+ "z = Tensor(2, mstype.int32)\n",
+ "m = Tensor(True, mstype.bool_)\n",
+ "n = Tensor((1, 2, 3), mstype.int16)\n",
+ "p = Tensor([4.0, 5.0, 6.0], mstype.float64)\n",
+ "\n",
+ "print(x, \"\\n\\n\", y, \"\\n\\n\", z, \"\\n\\n\", m, \"\\n\\n\", n, \"\\n\\n\", p)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 张量的属性"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 属性\n",
+ "\n",
+ "张量的属性包括形状(shape)和数据类型(dtype)。\n",
+ "\n",
+ " * 形状:`Tensor`的shape,是一个tuple。\n",
+ "\n",
+ " * 数据类型:`Tensor`的dtype,是MindSpore的一个数据类型。\n",
+ "\n",
+ "代码样例如下:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(2, 2) Int32\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "from mindspore import Tensor\n",
+ "from mindspore.common import dtype as mstype\n",
+ "\n",
+ "x = Tensor(np.array([[1, 2], [3, 4]]), mstype.int32)\n",
+ "x_shape = x.shape\n",
+ "x_dtype = x.dtype\n",
+ "\n",
+ "print(x_shape, x_dtype)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.5"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}