diff --git a/docs/mindspore/source_en/api_python/operator_list_parallel.md b/docs/mindspore/source_en/api_python/operator_list_parallel.md
index 294d45eb4a5fe86281cb4cc4469d9b5ab818d41d..2516f6d7ef861f05542922c7fccf9c910c3d5f4e 100644
--- a/docs/mindspore/source_en/api_python/operator_list_parallel.md
+++ b/docs/mindspore/source_en/api_python/operator_list_parallel.md
@@ -48,6 +48,7 @@ None | Not support confi
| [mindspore.ops.DivNoNan](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.DivNoNan.html) | None | Not support config layout |
| [mindspore.ops.Dropout](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Dropout.html) | None | Not support config layout |
| [mindspore.ops.Elu](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Elu.html) | None | Not support config layout |
+| [mindspore.ops.embedding](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.embedding.html) | 1. padding_idx, max_norm, norm_type, and scale_gradid_by_freq only support default values.
2. The first input does not support splitting.
3. The second input does not support scenarios where it cannot be cut off. | Layout configuration is supported. |
| [mindspore.ops.EmbeddingLookup](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.EmbeddingLookup.html) | The same as Gather. | Not support config layout |
| [mindspore.ops.Equal](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Equal.html) | None | Not support config layout |
| [mindspore.ops.Erf](https://www.mindspore.cn/docs/en/master/api_python/ops/mindspore.ops.Erf.html) | None | Not support config layout |
diff --git a/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md b/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md
index 5feeec361d3edeeabde79d3cf958fadab2a813e8..13170143b40bfe188c288df648abdeddf5da1e99 100644
--- a/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md
+++ b/docs/mindspore/source_zh_cn/api_python/operator_list_parallel.md
@@ -47,6 +47,7 @@
| [mindspore.ops.DivNoNan](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.DivNoNan.html) | 无 | 不支持配置Layout |
| [mindspore.ops.Dropout](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Dropout.html) | 无 | 不支持配置Layout |
| [mindspore.ops.Elu](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Elu.html) | 无 | 不支持配置Layout |
+| [mindspore.ops.embedding](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.embedding.html) | 1. padding_idx、max_norm、norm_type和scale_gradid_by_freq仅支持默认值;
2. 第一个输入不支持切分;
3. 第二个输入不支持切不满的情况。 | 支持配置Layout |
| [mindspore.ops.EmbeddingLookup](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.EmbeddingLookup.html) | 同Gather | 不支持配置Layout |
| [mindspore.ops.Equal](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Equal.html) | 无 | 不支持配置Layout |
| [mindspore.ops.Erf](https://www.mindspore.cn/docs/zh-CN/master/api_python/ops/mindspore.ops.Erf.html) | 无 | 不支持配置Layout |
diff --git a/docs/mindspore/source_zh_cn/model_train/index.rst b/docs/mindspore/source_zh_cn/model_train/index.rst
index 77796425cea41b235d57e3f0313a2cc07bb41a00..8abb8c706b361623e58c48dad6623418fd08d4c7 100644
--- a/docs/mindspore/source_zh_cn/model_train/index.rst
+++ b/docs/mindspore/source_zh_cn/model_train/index.rst
@@ -91,7 +91,6 @@
train_availability/fault_recover
train_availability/graceful_exit
- train_availability/UCE_fault_recover
.. toctree::
:glob:
diff --git a/docs/mindspore/source_zh_cn/model_train/train_availability/UCE_fault_recover.md b/docs/mindspore/source_zh_cn/model_train/train_availability/UCE_fault_recover.md
deleted file mode 100644
index ad038540a2f47742988d04168a5c9b3eeb8bb69e..0000000000000000000000000000000000000000
--- a/docs/mindspore/source_zh_cn/model_train/train_availability/UCE_fault_recover.md
+++ /dev/null
@@ -1,154 +0,0 @@
-# UCE故障快速恢复
-
-[](https://gitee.com/mindspore/docs/blob/master/docs/mindspore/source_zh_cn/model_train/train_availability/UCE_fault_recover.md)
-
-## 概述
-
-在模型并行训练过程中,可能会遇到UCE(Uncorrectable Error)故障导致训练中断。重新启动训练会产生巨大的资源开销,为此MindSpore提供了故障恢复方案。该方案使模型能够在发生故障时,从故障发生处快速恢复并继续训练,无需重启训练。
-
-### 场景限制
-
-1. 目前仅支持图模式。
-2. 不支持网络中使用对训练结果产生影响的全局状态变量。
-
-## 用例
-
-下面以一个4卡数据并行网络训练为例,介绍如何配置UCE故障快速恢复。配置完成后,在训练中如遇到UCE故障,MindSpore和MindIO会停止所有卡的训练,对故障卡进行清洗和修复,从故障卡的备份卡拷贝参数到故障卡并继续训练。如果故障发生在第n个step,继续训练将从第n+1个step开始。
-
-### 环境准备
-
-开启UCE快速恢复功能需要先安装 `MindIO`, 详情参见[MindIO](https://www.hiascend.com/document/detail/zh/mindx-dl/60rc2/mindio/mindiottp/mindiottp001.html)。
-
-### 准备数据
-
-下载MNIST数据集,并解压数据集到项目目录。
-
-```bash
-wget http://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip
-unzip MNIST_Data.zip
-```
-
-### 模型定义
-
-开启UCE快速恢复功能需要设置TFT优化器, 在优化器更新前向MindIO TFT上报状态。用 `OptTFTWrapper` 来配置, 详情参见[OptTFTWrapper](https://www.mindspore.cn/docs/zh-CN/master/api_python/nn/mindspore.nn.OptTFTWrapper.html)。
-
-```python
-
-import os
-import math
-import mindspore as ms
-import mindspore.dataset as ds
-from mindspore import nn, ops, Parameter, train
-from mindspore.communication import init
-from mindspore.common.initializer import initializer, HeUniform
-
-
-ms.set_context(mode=ms.GRAPH_MODE,
- jit_level='O1')
-ms.set_device(device_target="Ascend")
-
-ms.set_auto_parallel_context(parallel_mode=ms.ParallelMode.SEMI_AUTO_PARALLEL)
-init()
-
-class MatMulCell(nn.Cell):
- """
- MatMulCell definition.
- """
- def __init__(self, param=None, shape=None):
- super().__init__()
- if shape is None:
- shape = [28 * 28, 512]
- weight_init = HeUniform(math.sqrt(5))
- self.param = Parameter(initializer(weight_init, shape), name="param")
- if param is not None:
- self.param = param
- self.print = ops.Print()
- self.matmul = ops.MatMul()
-
- def construct(self, x):
- out = self.matmul(x, self.param)
- self.print("out is:", out)
- return out
-
-
-class Network(nn.Cell):
- """
- Network definition.
- """
- def __init__(self):
- super().__init__()
- self.flatten = nn.Flatten()
- self.layer1 = MatMulCell()
- self.relu1 = nn.ReLU()
- self.layer2 = nn.Dense(512, 512)
- self.relu2 = nn.ReLU()
- self.layer3 = nn.Dense(512, 10)
-
- def construct(self, x):
- x = self.flatten(x)
- x = self.layer1(x)
- x = self.relu1(x)
- x = self.layer2(x)
- x = self.relu2(x)
- logits = self.layer3(x)
- return logits
-
-net = Network()
-
-
-def create_dataset(batch_size):
- """create dataset"""
- dataset_path = os.getenv("DATA_PATH")
- dataset = ds.MnistDataset(dataset_path)
- image_transforms = [
- ds.vision.Rescale(1.0 / 255.0, 0),
- ds.vision.Normalize(mean=(0.1307,), std=(0.3081,)),
- ds.vision.HWC2CHW()
- ]
- label_transform = ds.transforms.TypeCast(ms.int32)
- dataset = dataset.map(image_transforms, 'image')
- dataset = dataset.map(label_transform, 'label')
- dataset = dataset.batch(batch_size)
- return dataset
-
-dataset = create_dataset(32)
-
-optimizer = nn.SGD(net.trainable_params(), 1e-2)
-#配置TFT优化器
-optimizer_wrapper = nn.OptTFTWrapper(optimizer)
-loss_fn = nn.CrossEntropyLoss()
-
-model = ms.Model(net, loss_fn=loss_fn, optimizer=optimizer_wrapper)
-```
-
-### Callback
-
-开启UCE快速恢复功能需要设置 `TrainFaultTolerance` Callback对象,并传入参数来配置,详情参见[TrainFaultTolerance](https://www.mindspore.cn/docs/zh-CN/master/api_python/train/mindspore.train.TrainFaultTolerance.html)。
-
-```python
-time_monitor = train.TimeMonitor(data_size=1)
-loss_cb = train.LossMonitor(1)
-
-# 设置callback对象
-tft_cb = train.TrainFaultTolerance()
-
-model.train(5, dataset, callbacks=[time_monitor, loss_cb, tft_cb])
-
-```
-
-### 配置环境变量并启动训练
-
-开启UCE故障快速恢复功能,需要设置环境变量 `MS_ENABLE_TFT='{UCE:1, TTP:1}'`。其中 `UCE:1` 表示开启UCE快速恢复功能,`TTP:1` 表示开启临终遗言功能。开启UCE会默认开启临终遗言功能,如果仅需开启临终遗言功能,可以设置环境变量 `MS_ENABLE_TFT='{UCE:0, TTP:1}'`。此外,还需要设置环境变量 `MINDIO_FOR_MINDSPORE=1`,使MindIO适配MindSpore。
-
-使用 `msrun` 命令启动训练。
-
-```bash
-export MS_ENABLE_TFT='{UCE:1 TTP:1}'
-export MINDIO_FOR_MINDSPORE=1
-export DATA_PATH=${EXEC_PATH}/MNIST_DATA/train/
-export MS_TFT_IP = "127.0.0.1"
-export MS_TFT_PORT = 30051
-
-# UCE_case.py 按照上述代码创建
-msrun --worker_num=4 --local_worker_num=4 --master_port=10970 --join=False --log_dir=./uce_logs UCE_case.py
-```