diff --git a/docs/sample_code/distributed_gradient_accumulation/train.py b/docs/sample_code/distributed_gradient_accumulation/train.py index 19e26209d51517c0228f477653796fdf6a5fed30..2d4cf7c9f39e06f9246f0f29806dc6ce6c6b85f7 100644 --- a/docs/sample_code/distributed_gradient_accumulation/train.py +++ b/docs/sample_code/distributed_gradient_accumulation/train.py @@ -20,7 +20,7 @@ import mindspore as ms import mindspore.dataset as ds from mindspore import nn, train from mindspore.communication import init -from mindspore.parallel import GradAccumulation +from mindspore.parallel.nn import GradAccumulation from mindspore.parallel.auto_parallel import AutoParallel from mindspore.nn.utils import no_init_parameters diff --git a/tutorials/source_en/parallel/distributed_gradient_accumulation.md b/tutorials/source_en/parallel/distributed_gradient_accumulation.md index 88b2dfe00921fd0c629185fdf5e2bb142377eef1..46c59edc28926d7a31ac44beb88161caa4026dcc 100644 --- a/tutorials/source_en/parallel/distributed_gradient_accumulation.md +++ b/tutorials/source_en/parallel/distributed_gradient_accumulation.md @@ -117,7 +117,7 @@ In this step, we need to define the loss function and the training process. Para ```python import mindspore as ms from mindspore import nn, train -from mindspore.parallel import GradAccumulation +from mindspore.parallel.nn import GradAccumulation loss_fn = nn.CrossEntropyLoss() loss_cb = train.LossMonitor(100) diff --git a/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md b/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md index 7fb03274840a53e889043162cc043171399a62b0..6612a29642518ec497cddc2c85c37c57fea63be6 100644 --- a/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md +++ b/tutorials/source_zh_cn/parallel/distributed_gradient_accumulation.md @@ -117,7 +117,7 @@ with no_init_parameters(): ```python import mindspore as ms from mindspore import nn, train -from mindspore.parallel import GradAccumulation +from mindspore.parallel.nn import GradAccumulation loss_fn = nn.CrossEntropyLoss() loss_cb = train.LossMonitor(100)