diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb index ea465b9b05fcbb8dac6bb9397e228af25da79a0f..c70ff291c2fee348844984606455db8bc1f7e2a9 100644 --- a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb +++ b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb @@ -170,6 +170,17 @@ "print(\"Best parameters:\", study.best_params)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "可以将以上输出绘制成参数——目标关系图,如下所示:\n", + "\n", + "![参数—目标关系图](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg)\n", + "\n", + "可以看到,采样点逐步靠近解析曲线最低点,体现搜索/调参的收敛性。" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -417,7 +428,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "上述样例代码执行30次后,得到最佳参数组合,最大割值为13350\n", + "将以上输出整理成自动调参进度图,如下所示:\n", + "\n", + "![调参进度图](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/master/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg)\n", + "\n", + "可以看出,随着试验推进,最优cut值被多次刷新,展示出调参收益。上述样例代码执行30次后,得到最佳参数组合,最大割值为13350。\n", "\n", "> 注意,本篇教程只是提供样例代码,优化次数仅为30,调参工具的结果具有一定随机性;在实际应用中结合业务需求可适当放大参数范围。" ] diff --git a/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg b/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg new file mode 100644 index 0000000000000000000000000000000000000000..5f7993237c8582aefd82a2b1c486e1342ea00c0b --- /dev/null +++ b/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg @@ -0,0 +1,520 @@ + + + + + + + + 2025-08-15T10:11:04.063796 + image/svg+xml + + + Matplotlib v3.6.3, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + −10.0 + + + + + + + + + + + + + −7.5 + + + + + + + + + + + + + −5.0 + + + + + + + + + + + + + −2.5 + + + + + + + + + + + + + 0.0 + + + + + + + + + + + + + 2.5 + + + + + + + + + + + + + 5.0 + + + + + + + + + + + + + 7.5 + + + + + + + + + + + + + 10.0 + + + + 参数 x + + + + + + + + + + + + + + + + + 0 + + + + + + + + + + + + + 20 + + + + + + + + + + + + + 40 + + + + + + + + + + + + + 60 + + + + + + + + + + + + + 80 + + + + + + + + + + + + + 100 + + + + + + + + + + + + + 120 + + + + + + + + + + + + + 140 + + + + 目标函数值 + + + + + + + + + + + + + + + + + + + + + + + 最佳试验 + x≈1.948,目标≈0.002712 + + + 注:曲线为理论函数 y=(x-2)^2;竖虚线标记理论最优 x=2。 + + + Optuna 示例:参数—目标关系(越小越好) + + + + + + + 解析曲线 y = (x - 2)^2 + + + + + + + + 试验采样点 + + + + + + + + + + diff --git a/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg b/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg new file mode 100644 index 0000000000000000000000000000000000000000..cf06e71340929370f8b5c7f6f2fee7bc2010e5cf --- /dev/null +++ b/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg @@ -0,0 +1,502 @@ + + + + + + + + 2025-08-15T10:11:01.522835 + image/svg+xml + + + Matplotlib v3.6.3, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 0 + + + + + + + + + + + + + 5 + + + + + + + + + + + + + 10 + + + + + + + + + + + + + 15 + + + + + + + + + + + + + 20 + + + + + + + + + + + + + 25 + + + + + + + + + + + + + 30 + + + + 试验编号(trial) + + + + + + + + + + + + + + + + + 13,100 + + + + + + + + + + + + + 13,150 + + + + + + + + + + + + + 13,200 + + + + + + + + + + + + + 13,250 + + + + + + + + + + + + + 13,300 + + + + + + + + + + + + + 13,350 + + + + cut 值(越大越好) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 最佳:trial 22 + cut=13350 + Δ提升≈200 + + + 注:数据源自教程运行日志;剔除了 cut=0 的无效试验;折线=每次试验,虚线=累计最优,方块=刷新时刻。 + + + QAIA 自动调参进度(已剔除 cut=0) + + + + + + + + + + 每次试验的 cut + + + + + + 累计最优(best‑so‑far) + + + + + + + + 最优被刷新 + + + + + + + + + +