diff --git a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb
index ea465b9b05fcbb8dac6bb9397e228af25da79a0f..c70ff291c2fee348844984606455db8bc1f7e2a9 100644
--- a/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb
+++ b/docs/mindquantum/docs/source_zh_cn/case_library/qaia_automatic_parameter_adjustment.ipynb
@@ -170,6 +170,17 @@
"print(\"Best parameters:\", study.best_params)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "可以将以上输出绘制成参数——目标关系图,如下所示:\n",
+ "\n",
+ "\n",
+ "\n",
+ "可以看到,采样点逐步靠近解析曲线最低点,体现搜索/调参的收敛性。"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
@@ -417,7 +428,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "上述样例代码执行30次后,得到最佳参数组合,最大割值为13350\n",
+ "将以上输出整理成自动调参进度图,如下所示:\n",
+ "\n",
+ "\n",
+ "\n",
+ "可以看出,随着试验推进,最优cut值被多次刷新,展示出调参收益。上述样例代码执行30次后,得到最佳参数组合,最大割值为13350。\n",
"\n",
"> 注意,本篇教程只是提供样例代码,优化次数仅为30,调参工具的结果具有一定随机性;在实际应用中结合业务需求可适当放大参数范围。"
]
diff --git a/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg b/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg
new file mode 100644
index 0000000000000000000000000000000000000000..5f7993237c8582aefd82a2b1c486e1342ea00c0b
--- /dev/null
+++ b/docs/mindquantum/docs/source_zh_cn/images/optuna_x_objective_cn.svg
@@ -0,0 +1,520 @@
+
+
+
diff --git a/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg b/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg
new file mode 100644
index 0000000000000000000000000000000000000000..cf06e71340929370f8b5c7f6f2fee7bc2010e5cf
--- /dev/null
+++ b/docs/mindquantum/docs/source_zh_cn/images/qaia_progress_cn.svg
@@ -0,0 +1,502 @@
+
+
+