From 574766eeff73d3a12d595bc4d3d4f29b4d810222 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E5=AE=A6=E6=99=93=E7=8E=B2?= <3174348550@qq.com> Date: Mon, 8 Dec 2025 15:26:50 +0800 Subject: [PATCH] modify links in new branch --- .../docs/source_en/concept_drift_images.md | 2 +- .../source_en/concept_drift_time_series.md | 2 +- .../source_en/differential_privacy_design.md | 8 +- .../docs/source_en/evaluation_of_CNNCTC.md | 6 +- .../docs/source_en/fault_injection.md | 2 +- .../docs/source_en/fuzzer_design.md | 8 +- .../source_en/improve_model_security_nad.md | 2 +- .../docs/source_en/mindarmour_install.md | 12 +- ..._user_privacy_with_differential_privacy.md | 4 +- ...tect_user_privacy_with_suppress_privacy.md | 8 +- .../source_en/test_model_security_fuzzing.md | 4 +- ...est_model_security_membership_inference.md | 2 +- .../docs/source_zh_cn/concept_drift_images.md | 2 +- .../source_zh_cn/concept_drift_time_series.md | 2 +- .../differential_privacy_design.md | 8 +- .../docs/source_zh_cn/evaluation_of_CNNCTC.md | 6 +- .../docs/source_zh_cn/fault_injection.md | 2 +- .../docs/source_zh_cn/fuzzer_design.md | 8 +- .../improve_model_security_nad.md | 2 +- .../docs/source_zh_cn/mindarmour_install.md | 12 +- ..._user_privacy_with_differential_privacy.md | 4 +- ...tect_user_privacy_with_suppress_privacy.md | 8 +- .../test_model_security_fuzzing.md | 4 +- ...est_model_security_membership_inference.md | 2 +- docs/mindchemistry/docs/source_en/index.rst | 2 +- .../source_en/quick_start/quick_start.ipynb | 4 +- .../source_en/user/molecular_prediction.md | 8 +- .../source_en/user/structure_generation.md | 2 +- .../mindchemistry/docs/source_zh_cn/index.rst | 2 +- .../quick_start/quick_start.ipynb | 4 +- .../source_zh_cn/user/molecular_prediction.md | 8 +- .../source_zh_cn/user/structure_generation.md | 2 +- .../dem-super-resolution/DEM-SRNet.ipynb | 6 +- docs/mindearth/docs/source_en/index.rst | 4 +- .../source_en/medium-range/FourCastNet.ipynb | 6 +- .../docs/source_en/medium-range/fuxi.ipynb | 4 +- .../source_en/medium-range/graphcast.ipynb | 6 +- .../source_en/medium-range/graphcast_tp.ipynb | 4 +- .../docs/source_en/medium-range/vit_kno.ipynb | 6 +- .../docs/source_en/mindearth_install.md | 2 +- .../docs/source_en/nowcasting/DgmrNet.ipynb | 6 +- .../source_en/nowcasting/Nowcastnet.ipynb | 2 +- .../source_en/nowcasting/prediffnet.ipynb | 4 +- .../dem-super-resolution/DEM-SRNet.ipynb | 6 +- docs/mindearth/docs/source_zh_cn/index.rst | 4 +- .../medium-range/FourCastNet.ipynb | 6 +- .../docs/source_zh_cn/medium-range/fuxi.ipynb | 4 +- .../source_zh_cn/medium-range/graphcast.ipynb | 6 +- .../medium-range/graphcast_tp.ipynb | 4 +- .../source_zh_cn/medium-range/vit_kno.ipynb | 6 +- .../docs/source_zh_cn/mindearth_install.md | 2 +- .../source_zh_cn/nowcasting/DgmrNet.ipynb | 6 +- .../source_zh_cn/nowcasting/Nowcastnet.ipynb | 2 +- .../source_zh_cn/nowcasting/prediffnet.ipynb | 4 +- .../docs/source_en/AD_FDTD_forward.md | 2 +- .../docs/source_en/AD_FDTD_inverse.md | 2 +- .../docs/source_en/incremental_learning.md | 2 +- docs/mindelec/docs/source_en/index.rst | 2 +- .../docs/source_en/intro_and_install.md | 6 +- .../docs/source_en/parameterization.md | 4 +- docs/mindelec/docs/source_en/point_cloud.md | 2 +- .../docs/source_en/time_domain_maxwell.md | 2 +- .../docs/source_zh_cn/AD_FDTD_forward.md | 2 +- .../docs/source_zh_cn/AD_FDTD_inverse.md | 2 +- .../docs/source_zh_cn/incremental_learning.md | 2 +- docs/mindelec/docs/source_zh_cn/index.rst | 2 +- .../docs/source_zh_cn/intro_and_install.md | 6 +- .../docs/source_zh_cn/parameterization.md | 4 +- .../mindelec/docs/source_zh_cn/point_cloud.md | 2 +- .../docs/source_zh_cn/time_domain_maxwell.md | 2 +- .../docs/source_en/cfd_solver/acoustic.ipynb | 8 +- .../docs/source_en/cfd_solver/couette.ipynb | 4 +- .../docs/source_en/cfd_solver/lax_tube.ipynb | 4 +- .../docs/source_en/cfd_solver/riemann2d.ipynb | 4 +- .../docs/source_en/cfd_solver/sod_tube.ipynb | 4 +- .../source_en/data_driven/2D_steady.ipynb | 8 +- .../source_en/data_driven/burgers_FNO1D.ipynb | 6 +- .../source_en/data_driven/burgers_KNO1D.ipynb | 4 +- .../source_en/data_driven/burgers_SNO1D.ipynb | 4 +- .../data_driven/flow_around_sphere.ipynb | 2 +- .../data_driven/navier_stokes_FNO2D.ipynb | 2 +- .../data_driven/navier_stokes_FNO3D.ipynb | 2 +- .../data_driven/navier_stokes_KNO2D.ipynb | 4 +- .../data_driven/navier_stokes_SNO2D.ipynb | 2 +- .../data_driven/navier_stokes_SNO3D.ipynb | 2 +- .../data_mechanism_fusion/pde_net.ipynb | 4 +- .../data_mechanism_fusion/phympgn.ipynb | 2 +- .../features/solve_pinns_by_mindflow.ipynb | 10 +- docs/mindflow/docs/source_en/index.rst | 4 +- .../docs/source_en/mindflow_install.md | 2 +- .../source_en/physics_driven/burgers1D.ipynb | 2 +- .../source_en/physics_driven/darcy2D.ipynb | 2 +- .../source_en/physics_driven/kovasznay.ipynb | 2 +- .../physics_driven/navier_stokes2D.ipynb | 2 +- .../navier_stokes_inverse.ipynb | 4 +- .../physics_driven/periodic_hill.ipynb | 6 +- .../physics_driven/poisson_geometry.ipynb | 2 +- .../physics_driven/poisson_point_source.ipynb | 2 +- .../physics_driven/taylor_green2D.ipynb | 4 +- .../source_zh_cn/cfd_solver/acoustic.ipynb | 8 +- .../source_zh_cn/cfd_solver/couette.ipynb | 4 +- .../source_zh_cn/cfd_solver/lax_tube.ipynb | 4 +- .../source_zh_cn/cfd_solver/riemann2d.ipynb | 4 +- .../source_zh_cn/cfd_solver/sod_tube.ipynb | 4 +- .../source_zh_cn/data_driven/2D_steady.ipynb | 8 +- .../data_driven/burgers_FNO1D.ipynb | 6 +- .../data_driven/burgers_KNO1D.ipynb | 4 +- .../data_driven/burgers_SNO1D.ipynb | 6 +- .../data_driven/flow_around_sphere.ipynb | 2 +- .../data_driven/navier_stokes_FNO2D.ipynb | 4 +- .../data_driven/navier_stokes_FNO3D.ipynb | 2 +- .../data_driven/navier_stokes_KNO2D.ipynb | 4 +- .../data_driven/navier_stokes_SNO2D.ipynb | 2 +- .../data_driven/navier_stokes_SNO3D.ipynb | 2 +- .../data_mechanism_fusion/pde_net.ipynb | 4 +- .../data_mechanism_fusion/phympgn.ipynb | 2 +- .../features/solve_pinns_by_mindflow.ipynb | 10 +- docs/mindflow/docs/source_zh_cn/index.rst | 4 +- .../docs/source_zh_cn/mindflow_install.md | 2 +- .../physics_driven/burgers1D.ipynb | 2 +- .../source_zh_cn/physics_driven/darcy2D.ipynb | 2 +- .../physics_driven/kovasznay.ipynb | 2 +- .../physics_driven/navier_stokes2D.ipynb | 2 +- .../navier_stokes_inverse.ipynb | 4 +- .../physics_driven/periodic_hill.ipynb | 4 +- .../physics_driven/poisson_geometry.ipynb | 2 +- .../physics_driven/taylor_green2D.ipynb | 4 +- docs/mindsponge/docs/source_en/index.rst | 4 +- docs/mindsponge/docs/source_en/user/basic.md | 4 +- docs/mindsponge/docs/source_en/user/design.md | 4 +- .../source_en/user/property_prediction.md | 2 +- .../docs/source_en/user/simulation.md | 2 +- .../source_en/user/structure_prediction.md | 10 +- docs/mindsponge/docs/source_zh_cn/index.rst | 4 +- .../docs/source_zh_cn/user/basic.md | 4 +- .../docs/source_zh_cn/user/design.md | 4 +- .../source_zh_cn/user/property_prediction.md | 2 +- .../docs/source_zh_cn/user/simulation.md | 2 +- .../source_zh_cn/user/structure_prediction.md | 10 +- .../docs/source_en/build_model_with_sciai.md | 6 +- docs/sciai/docs/source_en/installation.md | 2 +- docs/sciai/docs/source_en/launch_with_api.md | 2 +- .../docs/source_en/launch_with_scripts.md | 10 +- docs/sciai/docs/source_en/model_library.md | 124 +++++++++--------- .../source_zh_cn/build_model_with_sciai.md | 6 +- docs/sciai/docs/source_zh_cn/installation.md | 2 +- .../docs/source_zh_cn/launch_with_api.md | 2 +- .../docs/source_zh_cn/launch_with_scripts.md | 10 +- docs/sciai/docs/source_zh_cn/model_library.md | 124 +++++++++--------- 149 files changed, 426 insertions(+), 426 deletions(-) diff --git a/docs/mindarmour/docs/source_en/concept_drift_images.md b/docs/mindarmour/docs/source_en/concept_drift_images.md index 06e68276ef..78ccff4dc8 100644 --- a/docs/mindarmour/docs/source_en/concept_drift_images.md +++ b/docs/mindarmour/docs/source_en/concept_drift_images.md @@ -16,7 +16,7 @@ This example provides a method for detecting a distribution change of image data 5. Execute the concept drift detection function. 6. View the execution result. -> This example is for CPUs, GPUs, and Atlas training series. Currently only supports GRAPH_MODE. You can download the complete sample code at . +> This example is for CPUs, GPUs, and Atlas training series. Currently only supports GRAPH_MODE. You can download the complete sample code at . ## Preparations diff --git a/docs/mindarmour/docs/source_en/concept_drift_time_series.md b/docs/mindarmour/docs/source_en/concept_drift_time_series.md index a7d87ae4c5..75715ebda7 100644 --- a/docs/mindarmour/docs/source_en/concept_drift_time_series.md +++ b/docs/mindarmour/docs/source_en/concept_drift_time_series.md @@ -16,7 +16,7 @@ The following is a simple example showing the overall process of detecting conce 3. Call the concept drift detection function. 4. View the execution result. -> You can obtain the complete executable sample code at . +> You can obtain the complete executable sample code at . ## Preparations diff --git a/docs/mindarmour/docs/source_en/differential_privacy_design.md b/docs/mindarmour/docs/source_en/differential_privacy_design.md index 83fd5a7dfa..d998fdc03e 100644 --- a/docs/mindarmour/docs/source_en/differential_privacy_design.md +++ b/docs/mindarmour/docs/source_en/differential_privacy_design.md @@ -40,10 +40,10 @@ Compared with traditional differential privacy, ZCDP and RDP provide stricter pr ## Code Implementation -- [mechanisms.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py): implements the noise generation mechanism required by differential privacy training, including simple Gaussian noise, adaptive Gaussian noise, and adaptive clipping Gaussian noise. -- [optimizer.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/optimizer/optimizer.py): implements the fundamental logic of using the noise generation mechanism to add noise during backward propagation. -- [monitor.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/monitor/monitor.py): implements the callback function for computing the differential privacy budget. During model training, the current differential privacy budget is returned. -- [model.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/train/model.py): implements the logic of computing the loss and gradient as well as the gradient truncation logic of differential privacy training, which is the entry for users to use the differential privacy training capability. +- [mechanisms.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py): implements the noise generation mechanism required by differential privacy training, including simple Gaussian noise, adaptive Gaussian noise, and adaptive clipping Gaussian noise. +- [optimizer.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/optimizer/optimizer.py): implements the fundamental logic of using the noise generation mechanism to add noise during backward propagation. +- [monitor.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/monitor/monitor.py): implements the callback function for computing the differential privacy budget. During model training, the current differential privacy budget is returned. +- [model.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/train/model.py): implements the logic of computing the loss and gradient as well as the gradient truncation logic of differential privacy training, which is the entry for users to use the differential privacy training capability. ## References diff --git a/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md b/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md index 06a0a51ace..97491e9613 100644 --- a/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md +++ b/docs/mindarmour/docs/source_en/evaluation_of_CNNCTC.md @@ -6,7 +6,7 @@ This tutorial uses natural perturbation serving to evaluate the robustness of the OCR model, CNN-CTC. Multiple natural perturbation sample datasets are generated based on serving, and then the robustness of the CNN-CTC model is evaluated based on the model performance on the natural perturbation sample datasets. -> You can obtain the complete executable sample code at . +> You can obtain the complete executable sample code at . ## Environment Requirements @@ -63,7 +63,7 @@ In the preceding information, `%09d` indicates a string of 9 digits. Example: la ### Generating an Evaluation Dataset based on Natural Perturbation Serving -1. Start the serving server for generating natural perturbation samples. For details, see [Generating Natural Perturbation Samples Based on the Serving Server](https://atomgit.com/mindspore-lab/mindarmour/blob/master/examples/natural_robustness/serving/README.md#). +1. Start the serving server for generating natural perturbation samples. For details, see [Generating Natural Perturbation Samples Based on the Serving Server](https://atomgit.com/mindspore/mindarmour/blob/master/examples/natural_robustness/serving/README.md#). ```bash cd serving/server/ @@ -81,7 +81,7 @@ In the preceding information, `%09d` indicates a string of 9 digits. Example: la 2. The core code is described as follows: - 1. Configure the perturbation method. For details about the available perturbation methods and parameter configurations, see [transform/image](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/natural_robustness/transform/image). The following is a configuration example. + 1. Configure the perturbation method. For details about the available perturbation methods and parameter configurations, see [transform/image](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/natural_robustness/transform/image). The following is a configuration example. ```python PerturbConfig = [ diff --git a/docs/mindarmour/docs/source_en/fault_injection.md b/docs/mindarmour/docs/source_en/fault_injection.md index f921b0cc6d..59caf8ab7f 100644 --- a/docs/mindarmour/docs/source_en/fault_injection.md +++ b/docs/mindarmour/docs/source_en/fault_injection.md @@ -21,7 +21,7 @@ The following is a simple example showing the overall process of model fault inj 3. Call the fault injection module. 4. View the execution result. -> You can obtain the complete executable code at +> You can obtain the complete executable code at ## Preparations diff --git a/docs/mindarmour/docs/source_en/fuzzer_design.md b/docs/mindarmour/docs/source_en/fuzzer_design.md index a009a4616b..10a7e7c1d3 100644 --- a/docs/mindarmour/docs/source_en/fuzzer_design.md +++ b/docs/mindarmour/docs/source_en/fuzzer_design.md @@ -51,10 +51,10 @@ Through multiple rounds of mutations, you can obtain a series of variant data in ## Code Implementation -1. [fuzzing.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/fuzz_testing/fuzzing.py): overall fuzz testing process. -2. [model_coverage_metrics.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/fuzz_testing/model_coverage_metrics.py): neuron coverage rate metrics, including KMNC, NBC, and SNAC. -3. [image transform methods](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/natural_robustness/transform/image): image mutation methods, including a plurality of noise addition, blurring, brightness adjustment and affine transformation methods. -4. [adversarial attacks](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/adv_robustness/attacks): methods for generating adversarial examples based on white-box and black-box attacks. +1. [fuzzing.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/fuzz_testing/fuzzing.py): overall fuzz testing process. +2. [model_coverage_metrics.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/fuzz_testing/model_coverage_metrics.py): neuron coverage rate metrics, including KMNC, NBC, and SNAC. +3. [image transform methods](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/natural_robustness/transform/image): image mutation methods, including a plurality of noise addition, blurring, brightness adjustment and affine transformation methods. +4. [adversarial attacks](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/adv_robustness/attacks): methods for generating adversarial examples based on white-box and black-box attacks. ## References diff --git a/docs/mindarmour/docs/source_en/improve_model_security_nad.md b/docs/mindarmour/docs/source_en/improve_model_security_nad.md index e299f475ef..93aa9bed75 100644 --- a/docs/mindarmour/docs/source_en/improve_model_security_nad.md +++ b/docs/mindarmour/docs/source_en/improve_model_security_nad.md @@ -15,7 +15,7 @@ At the beginning of AI algorithm design, related security threats are sometimes This section describes how to use MindSpore Armour in adversarial attack and defense on image classification tasks by taking the Fast Gradient Sign Method (FGSM) attack algorithm and Natural Adversarial Defense (NAD) algorithm as examples. > The current sample is for CPU, GPU and Atlas training series. You can find the complete executable sample code at -> +> ## Creating an Target Model diff --git a/docs/mindarmour/docs/source_en/mindarmour_install.md b/docs/mindarmour/docs/source_en/mindarmour_install.md index e1d4736a62..9cf05e21c5 100644 --- a/docs/mindarmour/docs/source_en/mindarmour_install.md +++ b/docs/mindarmour/docs/source_en/mindarmour_install.md @@ -7,7 +7,7 @@ - The hardware platform should be Ascend, GPU or CPU. - See our [MindSpore Installation Guide](https://www.mindspore.cn/install/en) to install MindSpore. The versions of MindSpore Armour and MindSpore must be consistent. -- All other dependencies are included in [setup.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/setup.py). +- All other dependencies are included in [setup.py](https://atomgit.com/mindspore/mindarmour/blob/master/setup.py). ## Version dependency @@ -15,10 +15,10 @@ Due the dependency between MindSpore Armour and MindSpore, please follow the tab | MindSpore Armour Version | Branch | MindSpore Version | | ------------------ | --------------------------------------------------------- | ----------------- | -| 2.0.0 | [r2.0](https://atomgit.com/mindspore-lab/mindarmour/tree/r2.0/) | >=1.7.0 | -| 1.9.0 | [r1.9](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.9/) | >=1.7.0 | -| 1.8.0 | [r1.8](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.8/) | >=1.7.0 | -| 1.7.0 | [r1.7](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.7/) | 1.7.0 | +| 2.0.0 | [r2.0](https://atomgit.com/mindspore/mindarmour/tree/r2.0/) | >=1.7.0 | +| 1.9.0 | [r1.9](https://atomgit.com/mindspore/mindarmour/tree/r1.9/) | >=1.7.0 | +| 1.8.0 | [r1.8](https://atomgit.com/mindspore/mindarmour/tree/r1.8/) | >=1.7.0 | +| 1.7.0 | [r1.7](https://atomgit.com/mindspore/mindarmour/tree/r1.7/) | 1.7.0 | ## Installation @@ -30,7 +30,7 @@ You can install MindSpore Armour either by pip or by source code. pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{version}/MindArmour/any/mindarmour-{version}-py3-none-any.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple ``` -> - When the network is connected, dependency items are automatically downloaded during .whl package installation. (For details about other dependency items, see [setup.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/setup.py)). In other cases, you need to manually install dependency items. +> - When the network is connected, dependency items are automatically downloaded during .whl package installation. (For details about other dependency items, see [setup.py](https://atomgit.com/mindspore/mindarmour/blob/master/setup.py)). In other cases, you need to manually install dependency items. > - `{version}` denotes the version of MindSpore Armour. For example, when you are downloading MindSpore Armour 1.3.0, `{version}` should be 1.3.0. ### Installation by Source Code diff --git a/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md b/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md index 70a95cd8a0..c5e1c17a5c 100644 --- a/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md +++ b/docs/mindarmour/docs/source_en/protect_user_privacy_with_differential_privacy.md @@ -29,7 +29,7 @@ MindSpore Armour differential privacy module Differential-Privacy implements the The LeNet model and MNIST dataset are used as an example to describe how to use the differential privacy optimizer to train a neural network model on MindSpore. -> Because of the limit of CPU APIs, differential privacy training can only run on GPU or Ascend, except for CPU. This example is for the Atlas training series. You can download the complete sample code from . +> Because of the limit of CPU APIs, differential privacy training can only run on GPU or Ascend, except for CPU. This example is for the Atlas training series. You can download the complete sample code from . ## Implementation @@ -62,7 +62,7 @@ TAG = 'Lenet5_train' ### Configuring Parameters -1. Set the running environment, dataset path, model training parameters, checkpoint storage parameters, and differential privacy parameters. Replace `data_path` with your data path. For more configurations, see . +1. Set the running environment, dataset path, model training parameters, checkpoint storage parameters, and differential privacy parameters. Replace `data_path` with your data path. For more configurations, see . ```python cfg = edict({ diff --git a/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md b/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md index 7beeca992b..93f9290636 100644 --- a/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md +++ b/docs/mindarmour/docs/source_en/protect_user_privacy_with_suppress_privacy.md @@ -14,7 +14,7 @@ Suppress-Privacy, a Suppress-Privacy module in MindSpore Armour, implements a su Here is an example showing that how to train a neural network model in MindSpore using the LeNet model, MNIST dataset, and the SuppressourPrivacy optimizer. -> This example is for the Atlas training series and you can download the full sample code at +> This example is for the Atlas training series and you can download the full sample code at ## Implementation @@ -49,7 +49,7 @@ TAG = 'Lenet5_Suppress_train' ### Parameter Configuration -1. Set the runtime environment, model training parameters, checkpoint storage parameters, and the batch_size parameter is recommended not to exceed 64. For more configurations, please refer to . +1. Set the runtime environment, model training parameters, checkpoint storage parameters, and the batch_size parameter is recommended not to exceed 64. For more configurations, please refer to . ```python cfg = edict({ @@ -245,12 +245,12 @@ ds_train = generate_mnist_dataset('MNIST_unzip/train', cfg.batch_size) To evaluate the effect of privacy suppression training on the protection of the dataset, we test it using an image reversal attack. This inverse attack can restore the original image based on the output of the original image at one layer of the neural network, mainly because the network "remembers" the features of the training set during the training process. -The principle of this attack method can be found in and the complete code implementation can be found in , The following describes detailed test steps: +The principle of this attack method can be found in and the complete code implementation can be found in , The following describes detailed test steps: 1. Preparation In order to compare with the suppressed privacy training, we need to get the CheckPoint file of the model using the regular training first. The model training can be referred to - [mindarmour/examples/common/networks/lenet5](https://atomgit.com/mindspore-lab/mindarmour/blob/master/examples/common/networks/lenet5/mnist_train.py), + [mindarmour/examples/common/networks/lenet5](https://atomgit.com/mindspore/mindarmour/blob/master/examples/common/networks/lenet5/mnist_train.py), It has the following directory structure: ```text diff --git a/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md b/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md index 365d8818d5..dbed6a6d1f 100644 --- a/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md +++ b/docs/mindarmour/docs/source_en/test_model_security_fuzzing.md @@ -10,7 +10,7 @@ The fuzz testing module of MindSpore Armour uses the neuron coverage rate as the The LeNet model and MNIST dataset are used as an example to describe how to use Fuzz testing. -> This example is for CPUs, GPUs, and Atlas training series. Currently only supports GRAPH_MODE. You can download the complete sample code at . +> This example is for CPUs, GPUs, and Atlas training series. Currently only supports GRAPH_MODE. You can download the complete sample code at . ## Implementation @@ -93,7 +93,7 @@ For details about the API configuration, see the `set_context`. The data mutation method must include the method based on the image pixel value changes. - The first two image transform methods support user-defined configuration parameters and randomly generated parameters by algorithms. For user-defined configuration parameters see the class methods corresponding to . For randomly generated parameters by algorithms you can set method's params to `'auto_param': [True]`. The mutation parameters are randomly generated within the recommended range. + The first two image transform methods support user-defined configuration parameters and randomly generated parameters by algorithms. For user-defined configuration parameters see the class methods corresponding to . For randomly generated parameters by algorithms you can set method's params to `'auto_param': [True]`. The mutation parameters are randomly generated within the recommended range. For details about how to set parameters based on the attack defense method, see the corresponding attack method class. diff --git a/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md b/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md index a73bebf0e7..4a62d9c6be 100644 --- a/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md +++ b/docs/mindarmour/docs/source_en/test_model_security_membership_inference.md @@ -12,7 +12,7 @@ The following uses a VGG16 model and CIFAR-100 dataset as an example to describe > This example is for the Atlas training series. You can download the complete sample code in the following link: > -> +> ## Implementation diff --git a/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md b/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md index 7363a1582e..b25c5c192f 100644 --- a/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md +++ b/docs/mindarmour/docs/source_zh_cn/concept_drift_images.md @@ -17,7 +17,7 @@ 5. 执行概念漂移检测函数。 6. 查看结果。 -> 本例面向CPU、GPU、Atlas训练系列产品,目前仅支持GRAPH_MODE。你可以在这里找到完整可运行的样例代码:。 +> 本例面向CPU、GPU、Atlas训练系列产品,目前仅支持GRAPH_MODE。你可以在这里找到完整可运行的样例代码:。 ## 准备环节 diff --git a/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md b/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md index accb9dfde6..a159dafb88 100644 --- a/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md +++ b/docs/mindarmour/docs/source_zh_cn/concept_drift_time_series.md @@ -16,7 +16,7 @@ 3. 调用概念漂移检测函数。 4. 查看结果。 -> 你可以在这里找到完整可运行的样例代码:。 +> 你可以在这里找到完整可运行的样例代码:。 ## 准备环节 diff --git a/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md b/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md index 5c4f719871..85dc0425d8 100644 --- a/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md +++ b/docs/mindarmour/docs/source_zh_cn/differential_privacy_design.md @@ -40,10 +40,10 @@ Monitor提供RDP、ZCDP等回调函数,用于监测模型的差分隐私预算 ## 代码实现 -- [mechanisms.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py):这个文件实现了差分隐私训练所需的噪声生成机制,包括简单高斯噪声、自适应高斯噪声、自适应裁剪高斯噪声等。 -- [optimizer.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/optimizer/optimizer.py):这个文件实现了使用噪声生成机制在反向传播时添加噪声的根本逻辑。 -- [monitor.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/monitor/monitor.py):实现了计算差分隐私预算的回调函数,模型训练过程中,会反馈当前的差分隐私预算。 -- [model.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/privacy/diff_privacy/train/model.py):这个文件实现了计算损失和梯度的逻辑,差分隐私训练的梯度截断逻辑在此文件中实现,且model.py是用户使用差分隐私训练能力的入口。 +- [mechanisms.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/mechanisms/mechanisms.py):这个文件实现了差分隐私训练所需的噪声生成机制,包括简单高斯噪声、自适应高斯噪声、自适应裁剪高斯噪声等。 +- [optimizer.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/optimizer/optimizer.py):这个文件实现了使用噪声生成机制在反向传播时添加噪声的根本逻辑。 +- [monitor.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/monitor/monitor.py):实现了计算差分隐私预算的回调函数,模型训练过程中,会反馈当前的差分隐私预算。 +- [model.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/privacy/diff_privacy/train/model.py):这个文件实现了计算损失和梯度的逻辑,差分隐私训练的梯度截断逻辑在此文件中实现,且model.py是用户使用差分隐私训练能力的入口。 ## 参考文献 diff --git a/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md b/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md index 5dfa799017..af3e8f716d 100644 --- a/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md +++ b/docs/mindarmour/docs/source_zh_cn/evaluation_of_CNNCTC.md @@ -6,7 +6,7 @@ 本教程主要演示利用自然扰动serving服务,对OCR模型CNN-CTC做一个简单的鲁棒性评测。先基于serving生成多种自然扰动样本数据集,然后根据CNN-CTC模型在自然扰动样本数据集上的表现来评估模型的鲁棒性。 -> 你可以在这里找到完整可运行的样例代码:。 +> 你可以在这里找到完整可运行的样例代码:。 ## 环境要求 @@ -63,7 +63,7 @@ ### 基于自然扰动serving生成评测数据集 -1. 启动自然扰动serving服务。具体说明参考:[自然扰动样本生成serving服务](https://atomgit.com/mindspore-lab/mindarmour/blob/master/examples/natural_robustness/serving/README.md#) +1. 启动自然扰动serving服务。具体说明参考:[自然扰动样本生成serving服务](https://atomgit.com/mindspore/mindarmour/blob/master/examples/natural_robustness/serving/README.md#) ```bash cd serving/server/ @@ -81,7 +81,7 @@ 2. 核心代码说明: - 1. 配置扰动方法,目前可选的扰动方法及参数配置参考[image transform methods](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/natural_robustness/transform/image)。下面是一个配置例子。 + 1. 配置扰动方法,目前可选的扰动方法及参数配置参考[image transform methods](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/natural_robustness/transform/image)。下面是一个配置例子。 ```python PerturbConfig = [ diff --git a/docs/mindarmour/docs/source_zh_cn/fault_injection.md b/docs/mindarmour/docs/source_zh_cn/fault_injection.md index d72342eb16..2932360e00 100644 --- a/docs/mindarmour/docs/source_zh_cn/fault_injection.md +++ b/docs/mindarmour/docs/source_zh_cn/fault_injection.md @@ -18,7 +18,7 @@ 3. 调用故障注入模块。 4. 查看结果。 -> 你可以在这里找到完整可运行的样例代码:。 +> 你可以在这里找到完整可运行的样例代码:。 ## 准备环节 diff --git a/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md b/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md index 4134dc709c..954c235133 100644 --- a/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md +++ b/docs/mindarmour/docs/source_zh_cn/fuzzer_design.md @@ -51,10 +51,10 @@ Fuzz Testing架构主要包括三个模块: ## 代码实现 -1. [fuzzing.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/fuzz_testing/fuzzing.py):Fuzzer总体流程。 -2. [model_coverage_metrics.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/mindarmour/fuzz_testing/model_coverage_metrics.py):神经元覆盖率指标,包括KMNC,NBC,SNAC。 -3. [image transform methods](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/natural_robustness/transform/image):图像变异方法,包括多种加噪、模糊、亮度调整、仿射变化方法。 -4. [adversarial attacks](https://atomgit.com/mindspore-lab/mindarmour/tree/master/mindarmour/adv_robustness/attacks):对抗样本攻击方法,包含多种黑盒、白盒攻击方法。 +1. [fuzzing.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/fuzz_testing/fuzzing.py):Fuzzer总体流程。 +2. [model_coverage_metrics.py](https://atomgit.com/mindspore/mindarmour/blob/master/mindarmour/fuzz_testing/model_coverage_metrics.py):神经元覆盖率指标,包括KMNC,NBC,SNAC。 +3. [image transform methods](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/natural_robustness/transform/image):图像变异方法,包括多种加噪、模糊、亮度调整、仿射变化方法。 +4. [adversarial attacks](https://atomgit.com/mindspore/mindarmour/tree/master/mindarmour/adv_robustness/attacks):对抗样本攻击方法,包含多种黑盒、白盒攻击方法。 ## 参考文献 diff --git a/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md b/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md index 9f08e6c433..d8d3984114 100644 --- a/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md +++ b/docs/mindarmour/docs/source_zh_cn/improve_model_security_nad.md @@ -15,7 +15,7 @@ AI算法设计之初普遍未考虑相关的安全威胁,使得AI算法的判 这里通过图像分类任务上的对抗性攻防,以攻击算法FGSM和防御算法NAD为例,介绍MindSpore Armour在对抗攻防上的使用方法。 > 本例面向CPU、GPU、Atlas训练系列产品,你可以在这里下载完整的样例代码: -> +> ## 建立被攻击模型 diff --git a/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md b/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md index f9adae612f..9d484d5a5a 100644 --- a/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md +++ b/docs/mindarmour/docs/source_zh_cn/mindarmour_install.md @@ -7,7 +7,7 @@ - 硬件平台为Ascend、GPU或CPU。 - 参考[MindSpore安装指南](https://www.mindspore.cn/install),完成MindSpore的安装。 MindSpore Armour与MindSpore的版本需保持一致。 -- 其余依赖请参见[setup.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/setup.py)。 +- 其余依赖请参见[setup.py](https://atomgit.com/mindspore/mindarmour/blob/master/setup.py)。 ## MindSpore版本依赖关系 @@ -15,10 +15,10 @@ | MindSpore Armour | 分支 | MindSpore | | ---------- | --------------------------------------------------------- | --------- | -| 2.0.0 | [r2.0](https://atomgit.com/mindspore-lab/mindarmour/tree/r2.0/) | >=1.7.0 | -| 1.9.0 | [r1.9](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.9/) | >=1.7.0 | -| 1.8.0 | [r1.8](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.8/) | >=1.7.0 | -| 1.7.0 | [r1.7](https://atomgit.com/mindspore-lab/mindarmour/tree/r1.7/) | 1.7.0 | +| 2.0.0 | [r2.0](https://atomgit.com/mindspore/mindarmour/tree/r2.0/) | >=1.7.0 | +| 1.9.0 | [r1.9](https://atomgit.com/mindspore/mindarmour/tree/r1.9/) | >=1.7.0 | +| 1.8.0 | [r1.8](https://atomgit.com/mindspore/mindarmour/tree/r1.8/) | >=1.7.0 | +| 1.7.0 | [r1.7](https://atomgit.com/mindspore/mindarmour/tree/r1.7/) | 1.7.0 | ## 安装方式 @@ -30,7 +30,7 @@ pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{version}/MindArmour/any/mindarmour-{version}-py3-none-any.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple ``` -> - 在联网状态下,安装whl包时会自动下载MindSpore Armour安装包的依赖项(依赖项详情参见[setup.py](https://atomgit.com/mindspore-lab/mindarmour/blob/master/setup.py)),其余情况需自行安装。 +> - 在联网状态下,安装whl包时会自动下载MindSpore Armour安装包的依赖项(依赖项详情参见[setup.py](https://atomgit.com/mindspore/mindarmour/blob/master/setup.py)),其余情况需自行安装。 > - `{version}`表示MindSpore Armour版本号,例如下载1.3.0版本MindSpore Armour时,`{version}`应写为1.3.0。 ### 源码安装 diff --git a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md index c51cab3ff1..e5cbb5863c 100644 --- a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md +++ b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_differential_privacy.md @@ -30,7 +30,7 @@ MindSpore Armour的差分隐私模块Differential-Privacy,实现了差分隐 这里以LeNet模型,MNIST 数据集为例,说明如何在MindSpore上使用差分隐私优化器训练神经网络模型。 > 由于API支持的限制,差分隐私训练目前只支持在GPU或者Ascend服务器上面进行,不支持CPU。 -本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: +本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: ## 实现阶段 @@ -63,7 +63,7 @@ TAG = 'Lenet5_train' ### 参数配置 -1. 设置运行环境、数据集路径、模型训练参数、checkpoint存储参数、差分隐私参数,`data_path`数据路径替换成你的数据集所在路径。更多配置可以参考。 +1. 设置运行环境、数据集路径、模型训练参数、checkpoint存储参数、差分隐私参数,`data_path`数据路径替换成你的数据集所在路径。更多配置可以参考。 ```python cfg = edict({ diff --git a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md index 77561ac9cf..88586dc0b2 100644 --- a/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md +++ b/docs/mindarmour/docs/source_zh_cn/protect_user_privacy_with_suppress_privacy.md @@ -12,7 +12,7 @@ MindSpore Armour的抑制隐私模块Suppress-Privacy,实现了抑制隐私优 这里以LeNet模型,MNIST 数据集为例,说明如何在MindSpore上使用抑制隐私优化器训练神经网络模型。 -> 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: +> 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: ## 实现阶段 @@ -48,7 +48,7 @@ TAG = 'Lenet5_Suppress_train' ### 参数配置 -1. 设置运行环境、模型训练参数、checkpoint存储参数,batch_size参数建议不要超过64。更多配置可以参考。 +1. 设置运行环境、模型训练参数、checkpoint存储参数,batch_size参数建议不要超过64。更多配置可以参考。 ```python cfg = edict({ @@ -243,13 +243,13 @@ ds_train = generate_mnist_dataset('MNIST_unzip/train', cfg.batch_size) 为了评估抑制隐私训练对数据集的保护效果,我们使用图像逆向攻击进行测试, 这种逆向攻击可以根据原始图片在神经网络某一层的输出来反向还原出原始图片,主要原因是网络在训练的过程中“记住”了训练集的特征, -这种攻击方法的原理可以参考,完整的代码实现可以参考 +这种攻击方法的原理可以参考,完整的代码实现可以参考 ,下面介绍详细的测试步骤: 1. 准备工作 为了和抑制隐私训练进行对比,我们需要先使用常规训练得到模型的CheckPoint文件。模型训练可以参考 - [mindarmour/examples/common/networks/lenet5](https://atomgit.com/mindspore-lab/mindarmour/blob/master/examples/common/networks/lenet5/mnist_train.py) , + [mindarmour/examples/common/networks/lenet5](https://atomgit.com/mindspore/mindarmour/blob/master/examples/common/networks/lenet5/mnist_train.py) , 它的目录结构如下: ```text diff --git a/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md b/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md index 07bca6d962..9292baa31e 100644 --- a/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md +++ b/docs/mindarmour/docs/source_zh_cn/test_model_security_fuzzing.md @@ -10,7 +10,7 @@ MindSpore Armour的fuzz_testing模块以神经元覆盖率作为测试评价准 这里以LeNet模型,MNIST数据集为例,说明如何使用Fuzzer。 -> 本例面向CPU、GPU、Atlas训练系列产品,目前仅支持GRAPH_MODE。你可以在这里下载完整的样例代码:。 +> 本例面向CPU、GPU、Atlas训练系列产品,目前仅支持GRAPH_MODE。你可以在这里下载完整的样例代码:。 ## 实现阶段 @@ -93,7 +93,7 @@ ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend") 数据变异方法中一定要包含基于图像像素值变化的方法。 - 前两种类型的图像变化方法,支持用户自定义配置参数,也支持算法随机选择参数。用户自定义参数配置范围请参考: + 前两种类型的图像变化方法,支持用户自定义配置参数,也支持算法随机选择参数。用户自定义参数配置范围请参考: 中对应的类方法。算法随机选择参数,则`params`设置为`'auto_param': [True]`,参数将在推荐范围内随机生成。 基于对抗攻击方法的参数配置请参考对应的攻击方法类。 diff --git a/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md b/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md index 594a48e688..6e74e8f6a9 100644 --- a/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md +++ b/docs/mindarmour/docs/source_zh_cn/test_model_security_membership_inference.md @@ -12,7 +12,7 @@ >本例面向Atlas训练系列产品,您可以在这里下载完整的样例代码: > -> +> ## 实现阶段 diff --git a/docs/mindchemistry/docs/source_en/index.rst b/docs/mindchemistry/docs/source_en/index.rst index 2946e59a30..227acfc86d 100644 --- a/docs/mindchemistry/docs/source_en/index.rst +++ b/docs/mindchemistry/docs/source_en/index.rst @@ -172,7 +172,7 @@ Contribution Guide ------------------ - Please click here to see how to contribute your code: `Contribution - Guide `__ + Guide `__ License ------- diff --git a/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb b/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb index 151cb2584f..7eb7b5dc38 100644 --- a/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb +++ b/docs/mindchemistry/docs/source_en/quick_start/quick_start.ipynb @@ -81,7 +81,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` can be downloaded in [allegro/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/allegro/src)." + "The following `src` can be downloaded in [allegro/src](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/allegro/src)." ] }, { @@ -115,7 +115,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindChemistry/applications/allegro/rmd.yaml)." + "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindChemistry/applications/allegro/rmd.yaml)." ] }, { diff --git a/docs/mindchemistry/docs/source_en/user/molecular_prediction.md b/docs/mindchemistry/docs/source_en/user/molecular_prediction.md index 79a8aa1299..679ee41196 100644 --- a/docs/mindchemistry/docs/source_en/user/molecular_prediction.md +++ b/docs/mindchemistry/docs/source_en/user/molecular_prediction.md @@ -10,7 +10,7 @@ Prediction of crystalline material properties. We integrate the Matformer model | Function | Model | Training | Inferring | Back-end | |:--------------------------------|:------------------------------------------------------------------------------------------------------| :--- | :--- |:---------| -| Property prediction | [Nequip](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/nequip) | √ | √ | Ascend | -| Property prediction | [Allgro](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/allegro) | √ | √ | Ascend | -| Electronic structure prediction | [Deephe3nn](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/deephe3nn) | √ | √ | Ascend | -| Prediction of crystalline material properties | [Matformer](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/matformer) | √ | √ | Ascend | \ No newline at end of file +| Property prediction | [Nequip](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/nequip) | √ | √ | Ascend | +| Property prediction | [Allgro](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/allegro) | √ | √ | Ascend | +| Electronic structure prediction | [Deephe3nn](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/deephe3nn) | √ | √ | Ascend | +| Prediction of crystalline material properties | [Matformer](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/matformer) | √ | √ | Ascend | \ No newline at end of file diff --git a/docs/mindchemistry/docs/source_en/user/structure_generation.md b/docs/mindchemistry/docs/source_en/user/structure_generation.md index a5ac020932..19f6dcc16c 100644 --- a/docs/mindchemistry/docs/source_en/user/structure_generation.md +++ b/docs/mindchemistry/docs/source_en/user/structure_generation.md @@ -8,4 +8,4 @@ Structure generation, which is a structure generation model based on deep learni | Function | Model | Training | Inferring | Back-end | |:---------------------| :-------------------- | :--- | :--- |:-----------| -| structure generation | [DiffCSP](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/diffcsp) | √ | √ | Ascend | +| structure generation | [DiffCSP](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/diffcsp) | √ | √ | Ascend | diff --git a/docs/mindchemistry/docs/source_zh_cn/index.rst b/docs/mindchemistry/docs/source_zh_cn/index.rst index a3f3fdde67..d224173b0e 100644 --- a/docs/mindchemistry/docs/source_zh_cn/index.rst +++ b/docs/mindchemistry/docs/source_zh_cn/index.rst @@ -133,7 +133,7 @@ wujian, wangyuheng, Lin Peijia, gengchenhua, caowenbin, Siyu Yang 贡献指南 -------- -- 如何贡献您的代码,请点击此处查看:\ `贡献指南 `__ +- 如何贡献您的代码,请点击此处查看:\ `贡献指南 `__ 许可证 ------ diff --git a/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb b/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb index fddd9281bc..1cbb70dc43 100644 --- a/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb +++ b/docs/mindchemistry/docs/source_zh_cn/quick_start/quick_start.ipynb @@ -81,7 +81,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`可以在[allegro/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/allegro/src)下载。" + "下述`src`可以在[allegro/src](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/allegro/src)下载。" ] }, { @@ -115,7 +115,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "模型涉及的参数、优化器、数据配置见[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindChemistry/applications/allegro/rmd.yaml)。" + "模型涉及的参数、优化器、数据配置见[config](https://atomgit.com/mindspore/mindscience/blob/master/MindChemistry/applications/allegro/rmd.yaml)。" ] }, { diff --git a/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md b/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md index d621cb8507..f53e7e99ae 100644 --- a/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md +++ b/docs/mindchemistry/docs/source_zh_cn/user/molecular_prediction.md @@ -10,7 +10,7 @@ | 功能 | 模型 | 训练 | 推理 | 后端 | | :------------- |:----------------------------------------------------------------------------------------------------------------| :--- | :--- | :-------- | -| 分子预测| [Nequip](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/nequip) | √ | √ | Ascend | -| 分子预测| [Allgro](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/allegro) | √ | √ | Ascend | -| 电子结构预测| [Deephe3nn](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/deephe3nn) | √ | √ | Ascend | -| 晶体材料性质预测| [Matformer](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/matformer) | √ | √ | Ascend | \ No newline at end of file +| 分子预测| [Nequip](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/nequip) | √ | √ | Ascend | +| 分子预测| [Allgro](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/allegro) | √ | √ | Ascend | +| 电子结构预测| [Deephe3nn](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/deephe3nn) | √ | √ | Ascend | +| 晶体材料性质预测| [Matformer](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/matformer) | √ | √ | Ascend | \ No newline at end of file diff --git a/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md b/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md index c16dac7852..ae4a65a879 100644 --- a/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md +++ b/docs/mindchemistry/docs/source_zh_cn/user/structure_generation.md @@ -8,4 +8,4 @@ | 功能 | 模型 | 训练 | 推理 | 后端 | | :------------- | :-------------------- | :--- | :--- | :-------- | -| 结构生成| [DiffCSP](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindChemistry/applications/diffcsp) | √ | √ | Ascend | +| 结构生成| [DiffCSP](https://atomgit.com/mindspore/mindscience/tree/master/MindChemistry/applications/diffcsp) | √ | √ | Ascend | diff --git a/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb b/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb index 43c53db2c3..80e1998190 100644 --- a/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb +++ b/docs/mindearth/docs/source_en/dem-super-resolution/DEM-SRNet.ipynb @@ -84,7 +84,7 @@ "id": "663eb08c-8528-4d7b-83d3-a45247e4c20b", "metadata": {}, "source": [ - "The following `src` can be downloaded in [DEM super-resolution/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/dem-super-resolution/src)." + "The following `src` can be downloaded in [DEM super-resolution/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/dem-super-resolution/src)." ] }, { @@ -105,7 +105,7 @@ "id": "9d5a5b11-f2b6-412d-b70b-cd7f65b61863", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [DEM-SRNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)." + "You can get parameters of model, data and optimizer from [DEM-SRNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)." ] }, { @@ -139,7 +139,7 @@ "\n", "Download the training, validation and test datasets from [dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/dem_dataset.zip) to `./dataset`.\n", "\n", - "Modify the parameter of `root_dir` in the [DEM-SRNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml), which set the directory for dataset.\n", + "Modify the parameter of `root_dir` in the [DEM-SRNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml), which set the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/index.rst b/docs/mindearth/docs/source_en/index.rst index 1887a54331..1284659cee 100644 --- a/docs/mindearth/docs/source_en/index.rst +++ b/docs/mindearth/docs/source_en/index.rst @@ -3,13 +3,13 @@ MindSpore Earth Introduction Weather phenomena are closely related to human production and life, social economy, military activities and other aspects. Accurate weather forecasts can mitigate the impact of disaster weather events, avoid economic losses, and generate continuous fiscal revenue, such as energy, agriculture, transportation and entertainment industries. At present, the weather forecast mainly adopts numerical weather prediction models, which processes the observation data collected by meteorological satellites, observation stations and radars, solves the atmospheric dynamic equations describing weather evolution, and then provides weather and climate prediction information. The prediction process of numerical prediction model involves a lot of computation, which consumes a long time and a large amount of computation resources. Compared with the numerical prediction model, the data-driven deep learning model can effectively reduce the computational cost by several orders of magnitude. -`MindSpore Earth `_ is an earth science suite developed based on MindSpore. It supports AI meteorological prediction of short-term, medium-term, and long-term weather and catastrophic weather such as precipitation and typhoon. The aim is to provide efficient and easy-to-use AI meteorological prediction software for industrial scientific research engineers, college teachers and students. +`MindSpore Earth `_ is an earth science suite developed based on MindSpore. It supports AI meteorological prediction of short-term, medium-term, and long-term weather and catastrophic weather such as precipitation and typhoon. The aim is to provide efficient and easy-to-use AI meteorological prediction software for industrial scientific research engineers, college teachers and students. .. raw:: html -Code repository address: +Code repository address: .. toctree:: :glob: diff --git a/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb b/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb index c8a9a68043..c5b1185b4d 100644 --- a/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/FourCastNet.ipynb @@ -111,7 +111,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` can be downloaded in [FourCastNet/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/fourcastnet/src)." + "The following `src` can be downloaded in [FourCastNet/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/fourcastnet/src)." ] }, { @@ -137,7 +137,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [FourCastNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml)." + "You can get parameters of model, data and optimizer from [FourCastNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml)." ] }, { @@ -182,7 +182,7 @@ "\n", "Download the statistic, training and validation dataset from [dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/) to `./dataset`.\n", "\n", - "Modify the parameter of `root_dir` in the [FourCastNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml), which sets the directory for dataset.\n", + "Modify the parameter of `root_dir` in the [FourCastNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml), which sets the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb b/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb index 96efe16c41..a47f017c8e 100644 --- a/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/fuxi.ipynb @@ -89,7 +89,7 @@ "id": "062e7adc", "metadata": {}, "source": [ - "The following `src` can be downloaded in [fuxi/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/fuxi/src)." + "The following `src` can be downloaded in [fuxi/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/fuxi/src)." ] }, { @@ -123,7 +123,7 @@ "id": "18b670e4", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/raw/master/MindEarth/applications/medium-range/fuxi/configs/FuXi.yaml)." + "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/raw/master/MindEarth/applications/medium-range/fuxi/configs/FuXi.yaml)." ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb b/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb index 7be860a636..315d0bb036 100644 --- a/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/graphcast.ipynb @@ -126,7 +126,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` can be downloaded in [graphcast/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)." + "The following `src` can be downloaded in [graphcast/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)." ] }, { @@ -160,7 +160,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)." + "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)." ] }, { @@ -187,7 +187,7 @@ "\n", "Download the statistic, training and validation dataset from [dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/) to `./dataset`.\n", "\n", - "Modify the parameter of `root_dir` in the [GraphCast_1.4.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml), which set the directory for dataset.\n", + "Modify the parameter of `root_dir` in the [GraphCast_1.4.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml), which set the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb b/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb index a4e4169d60..668f30eaa1 100644 --- a/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/graphcast_tp.ipynb @@ -54,7 +54,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` can be downloaded in [graphcast/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)." + "The following `src` can be downloaded in [graphcast/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)." ] }, { @@ -87,7 +87,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCastTp.yaml). Set `tp: True` in `GraphCastTp.yaml`." + "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCastTp.yaml). Set `tp: True` in `GraphCastTp.yaml`." ] }, { diff --git a/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb b/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb index 1e6b96494d..454d25b400 100644 --- a/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb +++ b/docs/mindearth/docs/source_en/medium-range/vit_kno.ipynb @@ -65,7 +65,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` can be downloaded in [ViT-KNO/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/koopman_vit/src)." + "The following `src` can be downloaded in [ViT-KNO/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/koopman_vit/src)." ] }, { @@ -83,7 +83,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [vit_kno.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml)." + "You can get parameters of model, data and optimizer from [vit_kno.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml)." ] }, { @@ -120,7 +120,7 @@ "\n", "Download the statistic, training and validation dataset from [dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/) to `./dataset`.\n", "\n", - "Modify the parameter of `root_dir` in the [vit_kno.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml), which set the directory for dataset.\n", + "Modify the parameter of `root_dir` in the [vit_kno.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml), which set the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/mindearth_install.md b/docs/mindearth/docs/source_en/mindearth_install.md index 38197f6013..8ec7654234 100644 --- a/docs/mindearth/docs/source_en/mindearth_install.md +++ b/docs/mindearth/docs/source_en/mindearth_install.md @@ -6,7 +6,7 @@ - The hardware platform should be Ascend, GPU. - See our [MindSpore Installation Guide](https://www.mindspore.cn/install/en) to install MindSpore. -- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/requirements.txt). +- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/requirements.txt). ## Installation diff --git a/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb b/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb index 2ac3deaff3..6c7c94ba41 100644 --- a/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/DgmrNet.ipynb @@ -79,7 +79,7 @@ "id": "34d2a2d1-262c-49e3-aeea-89082e311a03", "metadata": {}, "source": [ - "The following `src` can be downloaded in [Dgmr/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/dgmr/src)." + "The following `src` can be downloaded in [Dgmr/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/dgmr/src)." ] }, { @@ -101,7 +101,7 @@ "id": "697fecae-a3af-4836-98b7-eaf150b95779", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [DgmrNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)." + "You can get parameters of model, data and optimizer from [DgmrNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)." ] }, { @@ -135,7 +135,7 @@ "\n", "Download the training and validation dataset from [dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/dgmr_dataset.zip) to `./dataset`.\n", "\n", - "Modify the parameter of `root_dir` in the [DgmrNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml), which set the directory for dataset.\n", + "Modify the parameter of `root_dir` in the [DgmrNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml), which set the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb b/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb index 13852e4728..c8c44a3563 100644 --- a/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/Nowcastnet.ipynb @@ -150,7 +150,7 @@ "source": [ "## Data Construction\n", "\n", - "Download the statistic, training and validation dataset from [dataset](https://download-mindspore.osinfra.cn/mindscience/mindearth/dataset/nowcastnet/tiny_datasets/) to `./dataset`. Modify the parameter of `root_dir` in the [Nowcastnet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/Nowcastnet/configs/Nowcastnet.yaml), which set the directory for dataset.\n", + "Download the statistic, training and validation dataset from [dataset](https://download-mindspore.osinfra.cn/mindscience/mindearth/dataset/nowcastnet/tiny_datasets/) to `./dataset`. Modify the parameter of `root_dir` in the [Nowcastnet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/Nowcastnet/configs/Nowcastnet.yaml), which set the directory for dataset.\n", "\n", "The `./dataset` is hosted with the following directory structure:\n", "\n", diff --git a/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb b/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb index 54da256559..e4c3fb9b26 100644 --- a/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb +++ b/docs/mindearth/docs/source_en/nowcasting/prediffnet.ipynb @@ -70,7 +70,7 @@ "id": "415eb386-b9ef-42af-9ab6-f98c9d8151da", "metadata": {}, "source": [ - "The following src can be downloaded from [PreDiff/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/src)." + "The following src can be downloaded from [PreDiff/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/src)." ] }, { @@ -113,7 +113,7 @@ "id": "7272ed00-61ef-439c-a420-b3bcefc13965", "metadata": {}, "source": [ - "The parameters of the model, data, optimizer, etc. can be configured in the [configuration file](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/configs)." + "The parameters of the model, data, optimizer, etc. can be configured in the [configuration file](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/configs)." ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb b/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb index 4d0963a88c..c4db37545f 100644 --- a/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/dem-super-resolution/DEM-SRNet.ipynb @@ -83,7 +83,7 @@ "id": "663eb08c-8528-4d7b-83d3-a45247e4c20b", "metadata": {}, "source": [ - " `src` 文件可以从[DEM super-resolution/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/dem-super-resolution/src)下载。" + " `src` 文件可以从[DEM super-resolution/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/dem-super-resolution/src)下载。" ] }, { @@ -104,7 +104,7 @@ "id": "9d5a5b11-f2b6-412d-b70b-cd7f65b61863", "metadata": {}, "source": [ - "model、data和optimizer的参数可以通过加载[DEM-SRNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)文件获取。" + "model、data和optimizer的参数可以通过加载[DEM-SRNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)文件获取。" ] }, { @@ -138,7 +138,7 @@ "\n", "从[dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/dem_dataset.zip)下载训练数据集、验证数据集、测试数据集到当前目录`./dataset`。\n", "\n", - "修改[DEM-SRNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", + "修改[DEM-SRNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/dem-super-resolution/DEM-SRNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/index.rst b/docs/mindearth/docs/source_zh_cn/index.rst index 1e56fc363a..a5f3f29d66 100644 --- a/docs/mindearth/docs/source_zh_cn/index.rst +++ b/docs/mindearth/docs/source_zh_cn/index.rst @@ -3,13 +3,13 @@ MindSpore Earth介绍 天气现象与人类的生产生活、社会经济、军事活动等方方面面都密切相关,准确的天气预报能够在灾害天气事件中减轻影响、避免经济损失,还能创造持续不断地财政收入,例如能源、农业、交通和娱乐行业。目前,天气预报主要采用数值天气预报模式,通过处理由气象卫星、观测台站、雷达等收集到的观测资料,求解描写天气演变的大气动力学方程组,进而提供天气气候的预测信息。数值预报模式的预测过程涉及大量计算,耗费较长时间与较大的计算资源。相较于数值预报模式,数据驱动的深度学习模型能够有效地将计算成本降低数个量级。 -`MindSpore Earth `_ 是基于昇思MindSpore开发的地球科学领域套件,支持短临、中期、长期等多时空尺度以及降水、台风等灾害性天气的AI气象预测,旨在于为广大的工业界科研工程人员、高校老师及学生提供高效易用的AI气象预测软件。 +`MindSpore Earth `_ 是基于昇思MindSpore开发的地球科学领域套件,支持短临、中期、长期等多时空尺度以及降水、台风等灾害性天气的AI气象预测,旨在于为广大的工业界科研工程人员、高校老师及学生提供高效易用的AI气象预测软件。 .. raw:: html -代码仓地址: +代码仓地址: .. toctree:: :glob: diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb index 47d212f6cd..4a340cff32 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/FourCastNet.ipynb @@ -111,7 +111,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " `src` 文件可以从[FourCastNet/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/fourcastnet/src)下载。" + " `src` 文件可以从[FourCastNet/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/fourcastnet/src)下载。" ] }, { @@ -137,7 +137,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "model、data和optimizer的参数可以通过加载yaml文件获取([FourCastNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml))。" + "model、data和optimizer的参数可以通过加载yaml文件获取([FourCastNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml))。" ] }, { @@ -182,7 +182,7 @@ "\n", "在[dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/)路径下,下载正则化参数、训练数据集验证数据集到 `./dataset`目录。\n", "\n", - "修改[FourCastNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", + "修改[FourCastNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/fourcastnet/configs/FourCastNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb index f80e9a7a42..c3d1f59004 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/fuxi.ipynb @@ -89,7 +89,7 @@ "id": "062e7adc", "metadata": {}, "source": [ - "下述`src`可以在[fuxi/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/fuxi/src)下载。\n" + "下述`src`可以在[fuxi/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/fuxi/src)下载。\n" ] }, { @@ -123,7 +123,7 @@ "id": "18b670e4", "metadata": {}, "source": [ - "可以在[配置文件](https://atomgit.com/mindspore-lab/mindscience/raw/master/MindEarth/applications/medium-range/fuxi/configs/FuXi.yaml)中配置模型、数据和优化器等参数。" + "可以在[配置文件](https://atomgit.com/mindspore/mindscience/raw/master/MindEarth/applications/medium-range/fuxi/configs/FuXi.yaml)中配置模型、数据和优化器等参数。" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb index 907ec248a7..b75262ccf2 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast.ipynb @@ -126,7 +126,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`可以在[graphcast/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)下载。" + "下述`src`可以在[graphcast/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)下载。" ] }, { @@ -160,7 +160,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "模型涉及的参数、优化器、数据配置见[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)。" + "模型涉及的参数、优化器、数据配置见[config](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)。" ] }, { @@ -187,7 +187,7 @@ "\n", "在[dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/)路径下,下载正则化参数、训练数据集验证数据集到 `./dataset`目录。\n", "\n", - "修改[GraphCast_1.4.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", + "修改[GraphCast_1.4.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCast_1.4.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb index 3695a2caf8..e31b58f04f 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/graphcast_tp.ipynb @@ -53,7 +53,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`可以在[graphcast/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)下载" + "下述`src`可以在[graphcast/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/graphcast/src)下载" ] }, { @@ -86,7 +86,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "模型涉及的参数、优化器、数据配置见configs。执行降水代码时,[GraphCastTp.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCastTp.yaml)文件中的`tp`需要设置为`True`。" + "模型涉及的参数、优化器、数据配置见configs。执行降水代码时,[GraphCastTp.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/graphcast/configs/GraphCastTp.yaml)文件中的`tp`需要设置为`True`。" ] }, { diff --git a/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb b/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb index dd9c3c139b..e9eaa61c99 100644 --- a/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb +++ b/docs/mindearth/docs/source_zh_cn/medium-range/vit_kno.ipynb @@ -65,7 +65,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " `src` 文件可以从[ViT-KNO/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/medium-range/koopman_vit/src)下载。" + " `src` 文件可以从[ViT-KNO/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/medium-range/koopman_vit/src)下载。" ] }, { @@ -83,7 +83,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "model、data和optimizer的参数可以通过加载yaml文件获取([vit_kno.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml))。" + "model、data和optimizer的参数可以通过加载yaml文件获取([vit_kno.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml))。" ] }, { @@ -119,7 +119,7 @@ "\n", "在[dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/WeatherBench_1.4_69/)路径下,下载正则化参数、训练数据集、验证数据集到 `./dataset`目录。\n", "\n", - "修改[vit_kno.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", + "修改[vit_kno.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/medium-range/koopman_vit/configs/vit_kno_1.4.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/mindearth_install.md b/docs/mindearth/docs/source_zh_cn/mindearth_install.md index 1fb5c8061a..7b56e2de00 100644 --- a/docs/mindearth/docs/source_zh_cn/mindearth_install.md +++ b/docs/mindearth/docs/source_zh_cn/mindearth_install.md @@ -6,7 +6,7 @@ - 硬件平台为Ascend、GPU。 - 参考[MindSpore安装指南](https://www.mindspore.cn/install),完成MindSpore的安装。 -- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/requirements.txt)。 +- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/requirements.txt)。 ## 安装方式 diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb index 3c7e37d2e0..83c7c50a1d 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/DgmrNet.ipynb @@ -79,7 +79,7 @@ "id": "34d2a2d1-262c-49e3-aeea-89082e311a03", "metadata": {}, "source": [ - " `src` 文件可以从[Dgmr/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/dgmr/src)下载。" + " `src` 文件可以从[Dgmr/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/dgmr/src)下载。" ] }, { @@ -101,7 +101,7 @@ "id": "697fecae-a3af-4836-98b7-eaf150b95779", "metadata": {}, "source": [ - "model、data和optimizer的参数可以通过加载[DgmrNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)文件获取。" + "model、data和optimizer的参数可以通过加载[DgmrNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)文件获取。" ] }, { @@ -134,7 +134,7 @@ "\n", "在[dataset](https://download.mindspore.cn/mindscience/mindearth/dataset/dgmr_dataset.zip)路径下,下载训练数据集、验证数据集、测试数据集到 `./dataset`目录。\n", "\n", - "修改[DgmrNet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", + "修改[DgmrNet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/dgmr/DgmrNet.yaml)配置文件中的`root_dir`参数,该参数设置了数据集的路径。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb index 4c1f6746c5..9de3e362ba 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/Nowcastnet.ipynb @@ -156,7 +156,7 @@ "source": [ "## 创建数据集\n", "\n", - "在[dataset](https://download-mindspore.osinfra.cn/mindscience/mindearth/dataset/nowcastnet/tiny_datasets/)路径下,下载训练数据集,验证数据集到`./dataset`目录,修改[Nowcastnet.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindEarth/applications/nowcasting/Nowcastnet/configs/Nowcastnet.yaml)配置文件中的`root_dir`。\n", + "在[dataset](https://download-mindspore.osinfra.cn/mindscience/mindearth/dataset/nowcastnet/tiny_datasets/)路径下,下载训练数据集,验证数据集到`./dataset`目录,修改[Nowcastnet.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindEarth/applications/nowcasting/Nowcastnet/configs/Nowcastnet.yaml)配置文件中的`root_dir`。\n", "\n", "`./dataset`中的目录结构如下所示:\n", "\n", diff --git a/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb b/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb index 6c7a15a346..4b751a2b8b 100644 --- a/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb +++ b/docs/mindearth/docs/source_zh_cn/nowcasting/prediffnet.ipynb @@ -70,7 +70,7 @@ "id": "415eb386-b9ef-42af-9ab6-f98c9d8151da", "metadata": {}, "source": [ - "下述src可以在[PreDiff/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/src)下载。" + "下述src可以在[PreDiff/src](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/src)下载。" ] }, { @@ -113,7 +113,7 @@ "id": "7272ed00-61ef-439c-a420-b3bcefc13965", "metadata": {}, "source": [ - "可以在[配置文件](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/configs)中配置模型、数据和优化器等参数。" + "可以在[配置文件](https://atomgit.com/mindspore/mindscience/tree/master/MindEarth/applications/nowcasting/PreDiff/configs)中配置模型、数据和优化器等参数。" ] }, { diff --git a/docs/mindelec/docs/source_en/AD_FDTD_forward.md b/docs/mindelec/docs/source_en/AD_FDTD_forward.md index b5091ac925..91dd559a1b 100644 --- a/docs/mindelec/docs/source_en/AD_FDTD_forward.md +++ b/docs/mindelec/docs/source_en/AD_FDTD_forward.md @@ -7,7 +7,7 @@ This tutorial introduces the method for solving electromagnetic positive problems provided by MindSpore Elec based on device-to-device differentiable FDTD. The process of solving Maxwell's equations by the finite-difference time-domain (FDTD) method is equivalent to a recurrent convolutional network (RCNN). The device-to-device differentiable FDTD can be obtained by rewriting the update process with the differentiable operator of MindSpore. Compared with the data-driven black-box model, the solution process of the differentiable FDTD method strictly satisfies the constraints of Maxwell's equations, and the accuracy is comparable to that of traditional numerical algorithms. > This example is for GPU processors and you can download the full sample code here: -> +> ## Maxwell's Equations diff --git a/docs/mindelec/docs/source_en/AD_FDTD_inverse.md b/docs/mindelec/docs/source_en/AD_FDTD_inverse.md index 7092fd8536..bb29e520a7 100644 --- a/docs/mindelec/docs/source_en/AD_FDTD_inverse.md +++ b/docs/mindelec/docs/source_en/AD_FDTD_inverse.md @@ -7,7 +7,7 @@ This tutorial introduces the method for solving electromagnetic inverse problems provided by MindSpore Elec based on device-to-device differentiable FDTD. The process of solving Maxwell's equations by the finite-difference time-domain (FDTD) method is equivalent to a recurrent convolutional network (RCNN). The device-to-device differentiable FDTD can be obtained by rewriting the update process with the differentiable operator of MindSpore. Compared with the data-driven black-box model, the solution process of the differentiable FDTD method strictly satisfies the constraints of Maxwell's equations. Using MindSpore gradient-ased optimizer, differentiable FDTD can solve various EM inverse problems. > This example is for GPU processors and you can download the full sample code here: -> +> ## Maxwell's Equations diff --git a/docs/mindelec/docs/source_en/incremental_learning.md b/docs/mindelec/docs/source_en/incremental_learning.md index f7d0f9cb7c..400c7125c2 100644 --- a/docs/mindelec/docs/source_en/incremental_learning.md +++ b/docs/mindelec/docs/source_en/incremental_learning.md @@ -9,7 +9,7 @@ The Physics-Informed Neural Networks (PINNs) is unable to solve parametric Parti This tutorial focuses on how to use Physics-Informed Auto-Decoder (PIAD) based on the MindSpore Elec toolkit to solve the parametric Maxwell’s equations with incremental training, which reduces the training time significantly. > This current sample is for Atlas training series. You can find the complete executable code at -> +> ## Problem Description diff --git a/docs/mindelec/docs/source_en/index.rst b/docs/mindelec/docs/source_en/index.rst index c86e432bfb..e51ed28599 100644 --- a/docs/mindelec/docs/source_en/index.rst +++ b/docs/mindelec/docs/source_en/index.rst @@ -11,7 +11,7 @@ MindSpore Elec has now achieved milestones in Huawei's terminal cell phone toler -Code repository address: +Code repository address: Data Building and Conversion ------------------------------ diff --git a/docs/mindelec/docs/source_en/intro_and_install.md b/docs/mindelec/docs/source_en/intro_and_install.md index 66e37e6e42..862f90323d 100644 --- a/docs/mindelec/docs/source_en/intro_and_install.md +++ b/docs/mindelec/docs/source_en/intro_and_install.md @@ -8,7 +8,7 @@ Electromagnetic simulation refers to simulating the propagation characteristics MindSpore Elec is an AI electromagnetic simulation toolkit developed based on MindSpore. It consists of the electromagnetic model library, data build and conversion, simulation computation, and result visualization. End-to-end AI electromagnetic simulation is supported. Currently, Huawei has achieved phase achievements in the tolerance scenario of Huawei mobile phones. Compared with the commercial simulation software, the S parameter error of AI electromagnetic simulation is about 2%, and the end-to-end simulation speed is improved by more than 10 times. -MindSpore Elec contains several AI EM simulation cases. For more details, please click to view [case](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindElec/examples). +MindSpore Elec contains several AI EM simulation cases. For more details, please click to view [case](https://atomgit.com/mindspore/mindscience/tree/master/MindElec/examples). In the future, MindSpore Elec will implement more simulation cases, and your contribution is welcome. @@ -19,7 +19,7 @@ In the future, MindSpore Elec will implement more simulation cases, and your con - The hardware platform should be Ascend, GPU or CPU. - See our [MindSpore Installation Guide](https://www.mindspore.cn/install/en) to install MindSpore. The versions of MindSpore Elec and MindSpore must be consistent. -- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/requirements.txt). +- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/requirements.txt). ### Installation @@ -31,7 +31,7 @@ You can install MindSpore Elec either by pip or by source code. pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{ms_version}/mindscience/{arch}/mindscience_mindelec_ascend-{me_version}-{python_version}-linux_{arch}.whl -i https://pypi.tuna.tsinghua.edu.cn/simple ``` -> - When the network is connected, dependency items are automatically downloaded during .whl package installation. (For details about other dependency items, see [setup.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/setup.py)), point cloud data sampling depends on [pythonocc](https://github.com/tpaviot/pythonocc-core), which you need to install manually. +> - When the network is connected, dependency items are automatically downloaded during .whl package installation. (For details about other dependency items, see [setup.py](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/setup.py)), point cloud data sampling depends on [pythonocc](https://github.com/tpaviot/pythonocc-core), which you need to install manually. > - `{arch}` specifies system architecture, for example, when using x86-64 Linux, `{arch}` should be x86_64, and aarch64 for ARM system(64-bit). > - `{ms_version}` refers to the MindSpore version that matches with MindSpore Elec. For example, if you want to install MindSpore Elec 0.1.0, then,`{ms_version}` should be 1.5.0. > - `{me_version}` refers to the version of MindSpore Elec. For example, when you are downloading MindSpore Elec 0.1.0, `{me_version}` should be 0.1.0. diff --git a/docs/mindelec/docs/source_en/parameterization.md b/docs/mindelec/docs/source_en/parameterization.md index f47ed90116..fedc296c7e 100644 --- a/docs/mindelec/docs/source_en/parameterization.md +++ b/docs/mindelec/docs/source_en/parameterization.md @@ -14,7 +14,7 @@ MindSpore Elec use AI model to directly obtain the S-parameters of the target to - The point cloud solution implements the mapping from the sampling point cloud of the antenna/phone to the simulation result. In this solution, the structure file of the mobile phone is converted into the point cloud tensor data, and the convolutional neural network is used to extract the structure features. Then, the final simulation result (S-parameters) are obtained through the mapping of multiple full-connected layers. The advantage of this solution is that it is applicable to complex working conditions where the number or types of structural parameters may change. > This current sample is for Atlas training series. You can find the complete executable code at -> +> ## Target Scenario @@ -40,7 +40,7 @@ There are 495 pairs of parameter-S11 samples. The training set and testing set a The data have been provided as .npy files, which can be downloaded from the following address: - + ## Parameterized Electromagnetic Simulation diff --git a/docs/mindelec/docs/source_en/point_cloud.md b/docs/mindelec/docs/source_en/point_cloud.md index 850327d321..c37927536f 100644 --- a/docs/mindelec/docs/source_en/point_cloud.md +++ b/docs/mindelec/docs/source_en/point_cloud.md @@ -9,7 +9,7 @@ This tutorial describes the deep learning electromagnetic simulation method base Conventional electromagnetic simulation usually uses finite element or finite-difference methods to compute electromagnetic fields. These methods require complex mesh division and iterative computation, which is time-consuming and affects product R&D efficiency. MindSpore Elec provides a new end-to-end electromagnetic field AI computation method. This method directly computes the electromagnetic field in the simulation area based on point cloud data without mesh division and iterative solution, greatly accelerating the overall simulation speed and facilitating efficient product R&D. > This current sample is for Atlas training series. You can find the complete executable code at -> +> ## Overall Process diff --git a/docs/mindelec/docs/source_en/time_domain_maxwell.md b/docs/mindelec/docs/source_en/time_domain_maxwell.md index 42c585b116..88c6007ce4 100644 --- a/docs/mindelec/docs/source_en/time_domain_maxwell.md +++ b/docs/mindelec/docs/source_en/time_domain_maxwell.md @@ -7,7 +7,7 @@ The rapid development of AI technology provides a new computing paradigm for scientific computing. The MindSpore Elec toolkit supports both data-driven and physics-driven AI methods to handle typical problems in the scientific computing field. The physics-driven AI method combines physical equations and initial boundary conditions to train the model. Compared with the data-driven method, the physics-driven method doesn’t require any labeled data. This tutorial focuses on physics-driven AI methods for solving point source time-domain Maxwell’s equations. > This current sample is for Atlas training series. You can find the complete executable code at -> +> ## Maxwell's Equations diff --git a/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md b/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md index 933caea80b..ac6108237a 100644 --- a/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md +++ b/docs/mindelec/docs/source_zh_cn/AD_FDTD_forward.md @@ -7,7 +7,7 @@ 本教程介绍MindSpore Elec提供的基于端到端可微分FDTD求解电磁正问题的方法。时域有限差分(FDTD)方法求解麦克斯韦方程组的过程等价于一个循环卷积网络(RCNN)。利用MindSpore的可微分算子重写更新流程,便可得到端到端可微分FDTD。相比于数据驱动的黑盒模型,可微分FDTD方法的求解流程严格满足麦克斯韦方程组的约束,精度与传统数值算法精度相当。 > 本例面向GPU处理器,你可以在这里下载完整的样例代码: -> +> ## 麦克斯韦方程组 diff --git a/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md b/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md index 4aeb7b35ef..1e43dd43da 100644 --- a/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md +++ b/docs/mindelec/docs/source_zh_cn/AD_FDTD_inverse.md @@ -7,7 +7,7 @@ 本教程介绍MindSpore Elec提供的基于端到端可微分FDTD求解电磁逆问题的方法。时域有限差分(FDTD)方法求解麦克斯韦方程组的过程等价于一个循环卷积网络(RCNN)。利用MindSpore的可微分算子重写更新流程,便可得到端到端可微分FDTD。相比于数据驱动的黑盒模型,可微分FDTD方法的求解流程严格满足麦克斯韦方程组的约束。利用MindSpore的基于梯度的优化器,可微分FDTD可求解各种电磁逆问题。 > 本例面向GPU处理器,你可以在这里下载完整的样例代码: -> +> ## 麦克斯韦方程组 diff --git a/docs/mindelec/docs/source_zh_cn/incremental_learning.md b/docs/mindelec/docs/source_zh_cn/incremental_learning.md index 4a21014945..88ed23b8f2 100644 --- a/docs/mindelec/docs/source_zh_cn/incremental_learning.md +++ b/docs/mindelec/docs/source_zh_cn/incremental_learning.md @@ -9,7 +9,7 @@ 本教程重点介绍基于MindSpore Elec套件的物理信息自解码器(Physics-Informed Auto-Decoder)增量训练方法,该方法可以快速求解同一类方程,极大减少重新训练的时间。 > 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: -> +> ## 问题描述 diff --git a/docs/mindelec/docs/source_zh_cn/index.rst b/docs/mindelec/docs/source_zh_cn/index.rst index a3d6a18c74..d2dc1ab895 100644 --- a/docs/mindelec/docs/source_zh_cn/index.rst +++ b/docs/mindelec/docs/source_zh_cn/index.rst @@ -11,7 +11,7 @@ MindSpore Elec目前已在华为终端手机容差场景中取得阶段性成果 -代码仓地址: +代码仓地址: 数据构建及转换 ---------------- diff --git a/docs/mindelec/docs/source_zh_cn/intro_and_install.md b/docs/mindelec/docs/source_zh_cn/intro_and_install.md index c7f41fc102..23fb76b82d 100644 --- a/docs/mindelec/docs/source_zh_cn/intro_and_install.md +++ b/docs/mindelec/docs/source_zh_cn/intro_and_install.md @@ -8,7 +8,7 @@ MindSpore Elec是基于MindSpore开发的AI电磁仿真工具包,由数据构建及转换、仿真计算、以及结果可视化组成。可以支持端到端的AI电磁仿真。目前已在华为终端手机容差场景中取得阶段性成果,相比商业仿真软件,AI电磁仿真的S参数误差在2%左右,端到端仿真速度提升10+倍。 -MindSpore Elec中包含了多个AI电磁仿真案例,更多详情,请点击查看[案例](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindElec/examples)。 +MindSpore Elec中包含了多个AI电磁仿真案例,更多详情,请点击查看[案例](https://atomgit.com/mindspore/mindscience/tree/master/MindElec/examples)。 未来,MindSpore Elec中将包含更多结合AI算法的电磁仿真案例,欢迎大家的关注和支持。 @@ -18,7 +18,7 @@ MindSpore Elec中包含了多个AI电磁仿真案例,更多详情,请点击 - 硬件平台为Ascend。 - 参考[MindSpore安装指南](https://www.mindspore.cn/install),完成MindSpore的安装。 -- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/requirements.txt)。 +- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/requirements.txt)。 ### 安装方式 @@ -30,7 +30,7 @@ MindSpore Elec中包含了多个AI电磁仿真案例,更多详情,请点击 pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{ms_version}/mindscience/{arch}/mindscience_mindelec_ascend-{me_version}-{python_version}-linux_{arch}.whl -i https://pypi.tuna.tsinghua.edu.cn/simple ``` -> - 在联网状态下,安装whl包时会自动下载MindSpore Elec安装包的依赖项(依赖项详情参见[setup.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/setup.py)),点云数据采样依赖[pythonocc](https://github.com/tpaviot/pythonocc-core),需自行安装。 +> - 在联网状态下,安装whl包时会自动下载MindSpore Elec安装包的依赖项(依赖项详情参见[setup.py](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/setup.py)),点云数据采样依赖[pythonocc](https://github.com/tpaviot/pythonocc-core),需自行安装。 > - `{arch}`表示系统架构,例如使用的Linux系统是x86架构64位时,`{arch}`应写为x86_64。如果系统是ARM架构64位,则写为aarch64。 > - `{ms_version}`表示与MindSpore Elec匹配的MindSpore版本号,例如下载0.1.0版本MindSpore Elec时,`{ms_version}`应写为1.5.0。 > - `{me_version}`表示MindSpore Elec版本号,例如下载0.1.0版本MindSpore Elec时,`{me_version}`应写为0.1.0。 diff --git a/docs/mindelec/docs/source_zh_cn/parameterization.md b/docs/mindelec/docs/source_zh_cn/parameterization.md index 2a2a6b21f1..2a8470cdc5 100644 --- a/docs/mindelec/docs/source_zh_cn/parameterization.md +++ b/docs/mindelec/docs/source_zh_cn/parameterization.md @@ -14,7 +14,7 @@ MindSpore Elec通过AI方法跳过传统数值方法的迭代计算直接得到 - 点云方案实现的是从天线/手机的采样点云到仿真结果的映射,该方案先将手机结构文件转化为点云张量数据,(压缩后)使用卷积神经网络提取结构特征,再通过数层全连接层映射到最终的仿真结果(S参数),该方案的优点是适用于结构参数数量或种类可能发生变化的复杂工况。 > 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: -> +> ## 目标场景 @@ -40,7 +40,7 @@ PEC金属板置于一定厚度的PCB长方体之上,呈现为左右对称蝶 该数据已经提供为.npy文件,可从以下地址下载。 - + ## 参数化电磁仿真 diff --git a/docs/mindelec/docs/source_zh_cn/point_cloud.md b/docs/mindelec/docs/source_zh_cn/point_cloud.md index a89f299e79..788b7b158b 100644 --- a/docs/mindelec/docs/source_zh_cn/point_cloud.md +++ b/docs/mindelec/docs/source_zh_cn/point_cloud.md @@ -9,7 +9,7 @@ 传统电磁仿真计算通常使用基于有限元或有限差分的方法计算电磁场,这些方法需要复杂的网格剖分与迭代计算,整体流程耗时长,影响产品研发效率。MindSpore Elec提供一种新的电磁场端到端AI计算方法,该方法基于点云数据,跳过网格剖分与迭代求解,直接计算仿真区域内电磁场,大幅提升整体仿真速度,助力产品高效研发。 > 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: -> +> ## 整体流程 diff --git a/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md b/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md index 6e2f7f8c24..a8b71fbffa 100644 --- a/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md +++ b/docs/mindelec/docs/source_zh_cn/time_domain_maxwell.md @@ -7,7 +7,7 @@ 人工智能技术的蓬勃发展为科学计算提供了新的范式。MindSpore Elec套件提供了物理驱动和数据驱动的AI方法。物理驱动的AI方法结合物理方程和初边界条件进行模型的训练,相比于数据驱动而言,其优势在于无需监督数据。本案例教程重点介绍物理驱动的AI方法求解点源时域麦克斯韦方程。 > 本例面向Atlas训练系列产品,你可以在这里下载完整的样例代码: -> +> ## 麦克斯韦方程组 diff --git a/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb b/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb index 95d09de75a..5b69daa36e 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/acoustic.ipynb @@ -55,7 +55,7 @@ "- $\\tilde{\\Delta}$ is the normalized Laplace operator, which is the Laplace operator when the grid spacing is 1.\n", "- $f^*$ the mask that marks the source position, with a value of 1 at the source and 0 at other positions.\n", "\n", - "The `src` package in this case can be downloaded at [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/acoustic/src)." + "The `src` package in this case can be downloaded at [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/acoustic/src)." ] }, { @@ -85,9 +85,9 @@ "source": [ "## Define input parameters and output sampling method\n", "\n", - "The required inputs for this case are dimensional 2D velocity field, source location list, and source waveform. The input file name is specified in the [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file. For user convenience, pre-set inputs are provided [here](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/cfd/acoustic). Please download the data and put them in `./dataset` in the case directory. The data include the velocity field `velocity.npy`, source location list `srclocs.csv`, and source waveform `srcwaves.csv`. Users can modify the input parameters based on the input file format.\n", + "The required inputs for this case are dimensional 2D velocity field, source location list, and source waveform. The input file name is specified in the [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file. For user convenience, pre-set inputs are provided [here](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/cfd/acoustic). Please download the data and put them in `./dataset` in the case directory. The data include the velocity field `velocity.npy`, source location list `srclocs.csv`, and source waveform `srcwaves.csv`. Users can modify the input parameters based on the input file format.\n", "\n", - "The output is a spatiotemporal distribution of the wavefield. To specify how the output is sampled in time and frequency, parameters such as `dt` and `nt` need to be specified in the [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file.\n", + "The output is a spatiotemporal distribution of the wavefield. To specify how the output is sampled in time and frequency, parameters such as `dt` and `nt` need to be specified in the [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file.\n", "\n", "Since the sampling rate of the input source waveform in time may differ from the required output, interpolation needs to be performed." ] @@ -135,7 +135,7 @@ "source": [ "## Select desired frequency points\n", "\n", - "With the output sampling method determined, all the desired frequency points are in turn determined. However, in order to reduce computational load, it is also possible to select only a portion of the frequency points for calculation, while obtaining the remaining frequency points through interpolation. The specific frequency point downsampling method is specified by the `downsample_mode` and `downsample_rate` in the [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file. The default is no downsampling, which means solving all frequency points except $\\omega=0$." + "With the output sampling method determined, all the desired frequency points are in turn determined. However, in order to reduce computational load, it is also possible to select only a portion of the frequency points for calculation, while obtaining the remaining frequency points through interpolation. The specific frequency point downsampling method is specified by the `downsample_mode` and `downsample_rate` in the [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) file. The default is no downsampling, which means solving all frequency points except $\\omega=0$." ] }, { diff --git a/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb b/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb index a887173c10..e16105394e 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/couette.ipynb @@ -43,7 +43,7 @@ "u(0, t)=0, \\quad u(h, t)=U, \\quad t>0\n", "$$\n", "\n", - "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/couette/src)." + "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/couette/src)." ] }, { @@ -74,7 +74,7 @@ "source": [ "## Defining Simulator and RunTime\n", "\n", - "The mesh, material, runtime, boundary conditions and numerical methods are defined in [couette.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/couette/couette.yaml)." + "The mesh, material, runtime, boundary conditions and numerical methods are defined in [couette.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/couette/couette.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb b/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb index 9d581a1f5f..92e279742f 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/lax_tube.ipynb @@ -39,7 +39,7 @@ "\n", "The Neumann boundary condition is applied on both side of the tube.\n", "\n", - "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/lax/src)." + "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/lax/src)." ] }, { @@ -66,7 +66,7 @@ "source": [ "## Defining Simulator and RunTime\n", "\n", - "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/lax/numeric.yaml)." + "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/lax/numeric.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb b/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb index 5208f5a41b..530f733c31 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/riemann2d.ipynb @@ -44,7 +44,7 @@ "\\left(\\begin{matrix} \\rho \\\\ u \\\\ v \\\\ p \\\\\\end{matrix}\\right)_{x>0.5, y<0.5} = \\left(\\begin{matrix} 0.5323 \\\\ 0.0 \\\\ 1.206 \\\\ 0.3 \\\\\\end{matrix}\\right)\n", "$$\n", "\n", - "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/riemann2d/src)." + "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/riemann2d/src)." ] }, { @@ -71,7 +71,7 @@ "source": [ "## Defining Simulator and RunTime\n", "\n", - "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/riemann2d/numeric.yaml)." + "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/riemann2d/numeric.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb b/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb index c30075e774..83de853014 100644 --- a/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb +++ b/docs/mindflow/docs/source_en/cfd_solver/sod_tube.ipynb @@ -39,7 +39,7 @@ "\n", "The Neumann boundary condition is applied on both side of the tube.\n", "\n", - "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/sod/src)." + "The following `src` pacakage can be downloaded in [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/sod/src)." ] }, { @@ -66,7 +66,7 @@ "source": [ "## Defining Simulator and RunTime\n", "\n", - "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/sod/numeric.yaml)." + "The mesh, material, runtime, boundary conditions and numerical methods are defined in [numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/sod/numeric.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb b/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb index aa9401ae36..2c42313c3e 100644 --- a/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/2D_steady.ipynb @@ -131,7 +131,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/airfoil/2D_steady/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/airfoil/2D_steady/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/airfoil/2D_steady/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/airfoil/2D_steady/src)." ] }, { @@ -168,7 +168,7 @@ "source": [ "## Configuring Network and Training Parameters\n", "\n", - "Read four types of parameters from the configuration file, which are model-related parameters (model), data-related parameters (data), optimizer-related parameters (optimizer), output-related parameters (ckpt) and validation-related parameters(eval). You can get these parameters from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/configs/vit.yaml)." + "Read four types of parameters from the configuration file, which are model-related parameters (model), data-related parameters (data), optimizer-related parameters (optimizer), output-related parameters (ckpt) and validation-related parameters(eval). You can get these parameters from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/configs/vit.yaml)." ] }, { @@ -232,7 +232,7 @@ "source": [ "This file contains 2808 flow field data for 51 supercritical airfoils in the range of Ma=0.73 and different angles of attack (- 2.0 to 4.6). Where, the data dimensions of input are (13, 192, 384), 192, and 384 are the grid resolution after Jacobi conversion, and 13 are different feature dimensions, respectively ($AOA$, $x$, $y$, $x_{i,0}$, $y_{i,0}$, $\\xi_x$, $\\xi_y$, $\\eta_x$, $\\eta_y$, $x_\\xi$, $x_\\eta$, $y_\\xi$, $y_\\eta$).\n", "\n", - "The data dimension of Label is (288, 768), which can be passed through the patchify function in [utils.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)(16 × 16). The flow field data (u, v, p) obtained after the operation can be restored to (3, 192, 384) through the unpatchify operation in [utils.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py). Users can customize and select based on their own network input and output design.\n", + "The data dimension of Label is (288, 768), which can be passed through the patchify function in [utils.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)(16 × 16). The flow field data (u, v, p) obtained after the operation can be restored to (3, 192, 384) through the unpatchify operation in [utils.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py). Users can customize and select based on their own network input and output design.\n", "\n", "First, convert the CFD dataset into tensor data, and then convert the tensor data into MindRecord. Design an AI data efficient conversion tool to achieve feature extraction of complex boundary and non-standard data of airfoil flow fields. The information of x, y, and u before and after conversion is shown in the following figure.\n", "\n", @@ -533,7 +533,7 @@ "source": [ "## Model Inference\n", "\n", - "After model training is complete, you can call the train function in [train.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/train.py). If train_mode is set to \"eval\", inference can be performed. If train_mode is set to \"finetune\", transfer learning can be performed.\n", + "After model training is complete, you can call the train function in [train.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/train.py). If train_mode is set to \"eval\", inference can be performed. If train_mode is set to \"finetune\", transfer learning can be performed.\n", "\n", "When designing a new airfoil, various initial boundary conditions (such as different angles of attack or Mach number) need to be considered for aerodynamic performance evaluation. In order to improve the generalization of the model and improve its utility in engineering scenarios, we can adopt the transfer learning mode. The method is as follows: pre-training the model in large-scale datasets, and fine-tuning the model in small datasets, so as to realize the inference generalization of the model to the new working conditions. Considering the trade-off between precision and time consumption, we considered four different size datasets to obtain different pre-trained models. Compared with pre-training on smaller datasets, pre-training requires less time, but the prediction precision is lower. Pre-training on larger data sets can produce more accurate results, but requires more pre-training time.\n", "\n", diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb index 209451d8ba..403b43bcff 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_FNO1D.ipynb @@ -126,7 +126,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/fno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/fno1d/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/fno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/fno1d/src)." ] }, { @@ -153,7 +153,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)." + "You can get parameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)." ] }, { @@ -244,7 +244,7 @@ "\n", "- The Decoding layer corresponds to `FNO1D.fc1` and `FNO1D.fc2` in the case to obtain the final predictive value.\n", "\n", - "The initialization of the model based on the network above, parameters can be modified in [configuration file](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)." + "The initialization of the model based on the network above, parameters can be modified in [configuration file](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb index d774a801f9..8ab558af24 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_KNO1D.ipynb @@ -146,7 +146,7 @@ } }, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/kno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/kno1d/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/kno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/kno1d/src)." ] }, { @@ -190,7 +190,7 @@ } }, "source": [ - "You can get hyperparameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/configs/kno1d.yaml)." + "You can get hyperparameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/configs/kno1d.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb b/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb index 6bf07f9551..73f9eadc7f 100644 --- a/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/burgers_SNO1D.ipynb @@ -128,7 +128,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/sno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/sno1d/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/burgers/sno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/sno1d/src)." ] }, { @@ -240,7 +240,7 @@ "\n", "- The decoding layer corresponds to `SNO1D.decoder` and consists of two convolutions.The decoder is used to obtain the final prediction.\n", "\n", - "The initialization of the model based on the network above, parameters can be modified in [configuration file](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)." + "The initialization of the model based on the network above, parameters can be modified in [configuration file](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb b/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb index df1db2d855..0601cc6ca3 100644 --- a/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/flow_around_sphere.ipynb @@ -749,7 +749,7 @@ } }, "source": [ - "After completing the model training, run [eval.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/flow_around_sphere/eval.py) to control the read model path through both the console and configuration files. This will enable you to efficiently and accurately infer the long-term 3D flow field in the future, based on the initial flow field at any given moment." + "After completing the model training, run [eval.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/flow_around_sphere/eval.py) to control the read model path through both the console and configuration files. This will enable you to efficiently and accurately infer the long-term 3D flow field in the future, based on the initial flow field at any given moment." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb index 4af400d0bc..b7951b8434 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO2D.ipynb @@ -126,7 +126,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/fno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno2d/src). Parameters can be modified in [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/configs/fno2d.yaml)." + "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/fno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno2d/src). Parameters can be modified in [config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/configs/fno2d.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb index 47d76ec303..a358370bf2 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_FNO3D.ipynb @@ -120,7 +120,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/fno3d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno3d/src).\n" + "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/fno3d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno3d/src).\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb index 23d248cb29..c8abf6ffd1 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_KNO2D.ipynb @@ -149,7 +149,7 @@ } }, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/kno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/kno2d/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/kno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/kno2d/src)." ] }, { @@ -194,7 +194,7 @@ } }, "source": [ - "You can get hyperparameters of model, data and optimizer from [config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/configs/kno2d.yaml)." + "You can get hyperparameters of model, data and optimizer from [config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/configs/kno2d.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb index f9010b7905..89bfb45b8d 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO2D.ipynb @@ -132,7 +132,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/sno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno2d/src)." + "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/sno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno2d/src)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb index cc8f7f6422..2627676a82 100644 --- a/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb +++ b/docs/mindflow/docs/source_en/data_driven/navier_stokes_SNO3D.ipynb @@ -120,7 +120,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/sno3d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno3d/src).\n" + "The following `src` pacakage can be downloaded in [applications/data_driven/navier_stokes/sno3d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno3d/src).\n" ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb index cf874535bf..0795bf8ecb 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/pde_net.ipynb @@ -125,7 +125,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/data_mechanism_fusion/pde_net/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_mechanism_fusion/pde_net/src)." + "The following `src` pacakage can be downloaded in [applications/data_mechanism_fusion/pde_net/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_mechanism_fusion/pde_net/src)." ] }, { @@ -148,7 +148,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Parameter can be modified in [configuration file](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/configs/pde_net.yaml)." + "Parameter can be modified in [configuration file](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/configs/pde_net.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb b/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb index 5a66fd69a6..fd4fc24bc6 100644 --- a/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb +++ b/docs/mindflow/docs/source_en/data_mechanism_fusion/phympgn.ipynb @@ -115,7 +115,7 @@ "source": [ "- Make sure the required dependency libraries (such as MindSpore) have been installed\n", "- Ensure the [cylinder flow dataset](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/data_mechanism_fusion/PhyMPGN/) has been downloaded\n", - "- Verify that the data and model weight storage paths have been properly configured in the [yamls/train.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/phympgn/yamls/train.yaml) configuration file" + "- Verify that the data and model weight storage paths have been properly configured in the [yamls/train.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/phympgn/yamls/train.yaml) configuration file" ] }, { diff --git a/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb b/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb index f88bcb2c11..c2657be921 100644 --- a/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb +++ b/docs/mindflow/docs/source_en/features/solve_pinns_by_mindflow.ipynb @@ -119,7 +119,7 @@ "source": [ "## Training Dataset Construction\n", "\n", - "In this case, random sampling is performed according to the domain, initial condition and boundary condition to generate training data sets. [Disk](https://mindspore.cn/mindflow/docs/en/master/geometry/mindflow.geometry.Disk.html#mindflow.geometry.Disk) and [CSGXOR](https://mindspore.cn/mindflow/docs/en/master/geometry/mindflow.geometry.CSGXOR.html#mindflow.geometry.CSGXOR) are used to make a geometry with input and output boundaries, as well as domain. Download data construction [Python script](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/dataset.py)." + "In this case, random sampling is performed according to the domain, initial condition and boundary condition to generate training data sets. [Disk](https://mindspore.cn/mindflow/docs/en/master/geometry/mindflow.geometry.Disk.html#mindflow.geometry.Disk) and [CSGXOR](https://mindspore.cn/mindflow/docs/en/master/geometry/mindflow.geometry.CSGXOR.html#mindflow.geometry.CSGXOR) are used to make a geometry with input and output boundaries, as well as domain. Download data construction [Python script](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/dataset.py)." ] }, { @@ -417,7 +417,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `Poisson2D` problem is defined based on the [Poisson](https://mindspore.cn/mindflow/docs/en/master/pde/mindflow.pde.Poisson.html#mindflow.pde.Poisson) base class combined with the governing equations and boundary conditions defined above. Download `Poisson2D` [Python script](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/model.py)." + "The following `Poisson2D` problem is defined based on the [Poisson](https://mindspore.cn/mindflow/docs/en/master/pde/mindflow.pde.Poisson.html#mindflow.pde.Poisson) base class combined with the governing equations and boundary conditions defined above. Download `Poisson2D` [Python script](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/model.py)." ] }, { @@ -479,7 +479,7 @@ "source": [ "## Model Training\n", "\n", - "With **MindSpore version >= 2.0.0**, we can use the functional programming for training neural networks. Download training [Python script](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/train.py)." + "With **MindSpore version >= 2.0.0**, we can use the functional programming for training neural networks. Download training [Python script](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/train.py)." ] }, { @@ -509,7 +509,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Download the calculate function of training process in [Python script](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)." + "Download the calculate function of training process in [Python script](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)." ] }, { @@ -800,7 +800,7 @@ "source": [ "## Model Evaluation and Visualization\n", "\n", - "After training, all data points in the flow field can be inferred. And related results can be visualized. Download visulization [Python script](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)." + "After training, all data points in the flow field can be inferred. And related results can be visualized. Download visulization [Python script](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)." ] }, { diff --git a/docs/mindflow/docs/source_en/index.rst b/docs/mindflow/docs/source_en/index.rst index 589d60c827..d55ef40605 100644 --- a/docs/mindflow/docs/source_en/index.rst +++ b/docs/mindflow/docs/source_en/index.rst @@ -3,13 +3,13 @@ MindSpore Flow Introduction Flow simulation aims to solve the fluid governing equation under a given boundary condition by numerical methods, so as to realize the flow analysis, prediction and control. It is widely used in engineering design in aerospace, ship manufacturing, energy and power industries. The numerical methods of traditional flow simulation, such as finite volume method and finite difference method, are mainly implemented by commercial software, requiring physical modeling, mesh generation, numerical dispersion, iterative solution and other steps. The simulation process is complex and the calculation cycle is long. AI has powerful learning fitting and natural parallel inference capabilities, which can improve the efficiency of the flow simulation. -`MindSpore Flow `_ is a flow simulation suite developed based on MindSpore. It supports AI flow simulation in industries such as aerospace, ship manufacturing, and energy and power. It aims to provide efficient and easy-to-use AI computing flow simulation software for industrial research engineers, university professors and students. +`MindSpore Flow `_ is a flow simulation suite developed based on MindSpore. It supports AI flow simulation in industries such as aerospace, ship manufacturing, and energy and power. It aims to provide efficient and easy-to-use AI computing flow simulation software for industrial research engineers, university professors and students. .. raw:: html -Code repository address: +Code repository address: .. toctree:: :glob: diff --git a/docs/mindflow/docs/source_en/mindflow_install.md b/docs/mindflow/docs/source_en/mindflow_install.md index 12787a5dab..4de4d28ff8 100644 --- a/docs/mindflow/docs/source_en/mindflow_install.md +++ b/docs/mindflow/docs/source_en/mindflow_install.md @@ -6,7 +6,7 @@ - The hardware platform should be Ascend, GPU. - See our [MindSpore Installation Guide](https://www.mindspore.cn/install/en) to install MindSpore. -- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/requirements.txt). +- All other dependencies are included in [requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/requirements.txt). - MindSpore Flow requires MindSpore version >=2.5.0, and Python version requires >=3.9. ## Installation diff --git a/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb b/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb index 599c6f6f84..d6eb1589f0 100644 --- a/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/burgers1D.ipynb @@ -86,7 +86,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/physics_driven/burgers/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/burgers/src)." + "The following `src` pacakage can be downloaded in [applications/physics_driven/burgers/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/burgers/src)." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb index 1edabf6a68..5fe7a4b075 100644 --- a/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/darcy2D.ipynb @@ -80,7 +80,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/physics_driven/darcy/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/darcy/src)." + "The following `src` pacakage can be downloaded in [applications/physics_driven/darcy/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/darcy/src)." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb b/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb index bb2e227af3..d50b493e8a 100644 --- a/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/kovasznay.ipynb @@ -77,7 +77,7 @@ "source": [ "## Creating the Dataset\n", "\n", - "In this tutorial, we randomly sample the solution domain and boundary conditions to generate the training dataset and test dataset. The specific method can be found in [src/dataset.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/kovasznay/src/dataset.py)." + "In this tutorial, we randomly sample the solution domain and boundary conditions to generate the training dataset and test dataset. The specific method can be found in [src/dataset.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/kovasznay/src/dataset.py)." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb index fac4e5e6a8..fad47e3981 100644 --- a/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/navier_stokes2D.ipynb @@ -89,7 +89,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_forward/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_forward/src)." + "The following `src` pacakage can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_forward/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_forward/src)." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb b/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb index 183e483860..953bfa2c38 100644 --- a/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/navier_stokes_inverse.ipynb @@ -86,7 +86,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` package can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_inverse/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/src)" + "The following `src` package can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_inverse/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/src)" ] }, { @@ -111,7 +111,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `inverse_navier_stokes.yaml` can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml)." + "The following `inverse_navier_stokes.yaml` can be downloaded in [applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb b/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb index 0aa866b3ab..8df8983f4a 100644 --- a/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/periodic_hill.ipynb @@ -46,7 +46,7 @@ "source": [ "## Preparation\n", "\n", - "Import the required libraries for training. The [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/src) folder includes functions for dataset processing, network models, and loss calculation.\n", + "Import the required libraries for training. The [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/src) folder includes functions for dataset processing, network models, and loss calculation.\n", "\n", "Training is conducted using the graph mode (GRAPH) of the MindSpore framework, and it takes place on the GPU (by default) or Ascend (single card)." ] @@ -85,7 +85,7 @@ "source": [ "## Loading Parameters\n", "\n", - "Import the configuration parameters for the dataset, model, and optimizer from the [rans.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml) file." + "Import the configuration parameters for the dataset, model, and optimizer from the [rans.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml) file." ] }, { @@ -136,7 +136,7 @@ "source": [ "## Model Initialization\n", "\n", - "Initialize the RANS-PINNs model based on the configuration in [rans.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml). Use the Mean Squared Error (MSE) loss function and the Adam optimizer." + "Initialize the RANS-PINNs model based on the configuration in [rans.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml). Use the Mean Squared Error (MSE) loss function and the Adam optimizer." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb b/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb index db640b1ae3..d2dacded4d 100644 --- a/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/poisson_geometry.ipynb @@ -54,7 +54,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The `poisson_cfg.yaml` file can be downloaded at [applications/physics_driven/poisson/point_source/poisson_cfg.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/poisson/point_source/poisson_cfg.yaml), and the `src` package can be downloaded at [applications/physics_driven/poisson/point_source/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src).\n" + "The `poisson_cfg.yaml` file can be downloaded at [applications/physics_driven/poisson/point_source/poisson_cfg.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/poisson/point_source/poisson_cfg.yaml), and the `src` package can be downloaded at [applications/physics_driven/poisson/point_source/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src).\n" ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb b/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb index c58d27f64a..6dd33a0bb2 100644 --- a/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/poisson_point_source.ipynb @@ -81,7 +81,7 @@ "source": [ "## Creating the Dataset\n", "\n", - "In this example, random sampling is performed in the solution domain, boundaries, and point source region (a rectangular area centered on the point source position) to generate the training dataset. See [src/dataset.py](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src) for the implementation." + "In this example, random sampling is performed in the solution domain, boundaries, and point source region (a rectangular area centered on the point source position) to generate the training dataset. See [src/dataset.py](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src) for the implementation." ] }, { diff --git a/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb b/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb index dcb9b0adfa..c702712924 100644 --- a/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb +++ b/docs/mindflow/docs/source_en/physics_driven/taylor_green2D.ipynb @@ -97,7 +97,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `src` pacakage can be downloaded in [applications/physics_driven/navier_stokes/taylor_green/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/src)." + "The following `src` pacakage can be downloaded in [applications/physics_driven/navier_stokes/taylor_green/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/src)." ] }, { @@ -121,7 +121,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The following `taylor_green_2D.yaml` can be downloaded in [applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml)." + "The following `taylor_green_2D.yaml` can be downloaded in [applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml)." ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb index 4a3a55dc76..ccf46f1b39 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/acoustic.ipynb @@ -55,7 +55,7 @@ "- $\\tilde{\\Delta}$ 为归一化 Laplace 算子,即网格间距均为 1 时的 Laplace 算子\n", "- $f^*$ 为标记震源位置的 mask,即在震源作用点为 1,其余位置为 0\n", "\n", - "本案例中 `src` 包可以在 [src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/acoustic/src) 下载。" + "本案例中 `src` 包可以在 [src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/acoustic/src) 下载。" ] }, { @@ -85,9 +85,9 @@ "source": [ "## 定义输入参数和输出采样方式\n", "\n", - "本案例所需的输入为有量纲 2D 速度场、震源位置列表、震源波形,在文件 [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 中指定输入文件名。为了方便用户直接验证,本案例在本[链接](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/cfd/acoustic)中提供了预置的输入数据,请下载所需要的数据集,并保存在 `./dataset` 目录下。数据集包括速度场 `velocity.npy`、震源位置列表 `srclocs.csv`、震源波形 `srcwaves.csv`。用户可仿照输入文件格式自行修改输入参数。\n", + "本案例所需的输入为有量纲 2D 速度场、震源位置列表、震源波形,在文件 [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 中指定输入文件名。为了方便用户直接验证,本案例在本[链接](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/cfd/acoustic)中提供了预置的输入数据,请下载所需要的数据集,并保存在 `./dataset` 目录下。数据集包括速度场 `velocity.npy`、震源位置列表 `srclocs.csv`、震源波形 `srcwaves.csv`。用户可仿照输入文件格式自行修改输入参数。\n", "\n", - "输出为时空分布的波场,为了明确输出如何在时间和频率上采样,需在 [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 文件中指定 `dt`, `nt` 等参数。\n", + "输出为时空分布的波场,为了明确输出如何在时间和频率上采样,需在 [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 文件中指定 `dt`, `nt` 等参数。\n", "\n", "由于输入的震源波形在时间上的采样率可能与输出所要求的不一致,因此需对其进行插值。" ] @@ -135,7 +135,7 @@ "source": [ "## 选取待求频点\n", "\n", - "确定了输出采样方式即确定了所有待求频点。但为了减少计算量,也可以只选择部分频点进行求解,其余频点通过插值获得。具体的频点降采样方式由 [config.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 文件中的 `downsample_mode`, `downsample_rate` 指定。默认为不做降采样,即求解除 $\\omega=0$ 之外的所有频点。" + "确定了输出采样方式即确定了所有待求频点。但为了减少计算量,也可以只选择部分频点进行求解,其余频点通过插值获得。具体的频点降采样方式由 [config.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/acoustic/config.yaml) 文件中的 `downsample_mode`, `downsample_rate` 指定。默认为不做降采样,即求解除 $\\omega=0$ 之外的所有频点。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb index 55e5734921..0d0c8723d0 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/couette.ipynb @@ -43,7 +43,7 @@ "u(0, t)=0, \\quad u(h, t)=U, \\quad t>0\n", "$$\n", "\n", - "本案例中`src`包可以在[src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/couette/src)下载。\n" + "本案例中`src`包可以在[src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/couette/src)下载。\n" ] }, { @@ -74,7 +74,7 @@ "source": [ "## 定义Simulator和RunTime\n", "\n", - "网格、材料、仿真时间、边界条件和数值方法的设置在文件[couette.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/couette/couette.yaml)中。" + "网格、材料、仿真时间、边界条件和数值方法的设置在文件[couette.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/couette/couette.yaml)中。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb index d318259ad6..7bfd68fef0 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/lax_tube.ipynb @@ -39,7 +39,7 @@ "\n", "在激波管两端,施加第二类边界条件。\n", "\n", - "本案例中`src`包可以在[src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/lax/src)下载。\n" + "本案例中`src`包可以在[src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/lax/src)下载。\n" ] }, { @@ -66,7 +66,7 @@ "source": [ "## 定义Simulator和RunTime\n", "\n", - "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/lax/numeric.yaml)中。" + "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/lax/numeric.yaml)中。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb index 30dce83a0e..163feceac9 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/riemann2d.ipynb @@ -44,7 +44,7 @@ "\\left(\\begin{matrix} \\rho \\\\ u \\\\ v \\\\ p \\\\\\end{matrix}\\right)_{x>0.5, y<0.5} = \\left(\\begin{matrix} 0.5323 \\\\ 0.0 \\\\ 1.206 \\\\ 0.3 \\\\\\end{matrix}\\right)\n", "$$\n", "\n", - "本案例中`src`包可以在[src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/riemann2d/src)下载。" + "本案例中`src`包可以在[src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/riemann2d/src)下载。" ] }, { @@ -71,7 +71,7 @@ "source": [ "## 定义Simulator和RunTime\n", "\n", - "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/riemann2d/numeric.yaml)中。" + "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/riemann2d/numeric.yaml)中。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb b/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb index 36bdcb787f..fc2f3b4a0e 100644 --- a/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb +++ b/docs/mindflow/docs/source_zh_cn/cfd_solver/sod_tube.ipynb @@ -39,7 +39,7 @@ "\n", "在激波管两端,施加第二类边界条件。\n", "\n", - "本案例中`src`包可以在[src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/cfd/sod/src)下载。" + "本案例中`src`包可以在[src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/cfd/sod/src)下载。" ] }, { @@ -66,7 +66,7 @@ "source": [ "## 定义Simulator和RunTime\n", "\n", - "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/cfd/sod/numeric.yaml)中。" + "网格、材料、仿真时间、边界条件和数值方法的设置在文件[numeric.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/cfd/sod/numeric.yaml)中。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb index ae9f4336c2..63f2e8ac5f 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/2D_steady.ipynb @@ -136,7 +136,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "以下src文件可以在[applications/data_driven/airfoil/2D_steady/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/airfoil/2D_steady/src)中下载。" + "以下src文件可以在[applications/data_driven/airfoil/2D_steady/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/airfoil/2D_steady/src)中下载。" ] }, { @@ -174,7 +174,7 @@ "source": [ "## 配置网络与训练参数\n", "\n", - "从配置文件中读取四类参数,分别为模型相关参数(model)、数据相关参数(data)、优化器相关参数(optimizer)、输出相关参数(ckpt)、验证相关参数(eval)。您可以从[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/configs/vit.yaml)获取这些参数。" + "从配置文件中读取四类参数,分别为模型相关参数(model)、数据相关参数(data)、优化器相关参数(optimizer)、输出相关参数(ckpt)、验证相关参数(eval)。您可以从[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/configs/vit.yaml)获取这些参数。" ] }, { @@ -238,7 +238,7 @@ "source": [ "该文件包含2808个流场数据,为51个超临界翼型在Ma=0.73和不同攻角范围内(-2.0~4.6)的流场数据。其中,input的数据维度为(13, 192, 384),192和384为经过雅格比转换后的网格分辨率,13为不同的特征维度,分别为($AOA$, $x$, $y$, $x_{i,0}$, $y_{i,0}$, $\\xi_x$, $\\xi_y$, $\\eta_x$, $\\eta_y$, $x_\\xi$, $x_\\eta$, $y_\\xi$, $y_\\eta$)。\n", "\n", - "Label的数据维度为(288,768),可以经过[utils.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)中的patchify 函数(16×16)操作后所得的流场数据(u,v,p),可以通过[utils.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)中的unpatchify操作还原成(3, 192, 384),用户可根据自身网络输入输出设计进行个性化配置和选择。\n", + "Label的数据维度为(288,768),可以经过[utils.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)中的patchify 函数(16×16)操作后所得的流场数据(u,v,p),可以通过[utils.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/src/utils.py)中的unpatchify操作还原成(3, 192, 384),用户可根据自身网络输入输出设计进行个性化配置和选择。\n", "\n", "首先将CFD的数据集转换成张量数据,然后将张量数据转换成MindRecord。设计AI数据高效转换工具,实现翼型流场复杂边界和非标数据的特征提取,转换前后的x,y和u的信息如下图所示。\n", "\n", @@ -539,7 +539,7 @@ "source": [ "## 模型推理\n", "\n", - "模型训练结束后即可通过调用[train.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/train.py)中的train函数,train_mode设置为eval可进行推理,设置为finetune可进行迁移学习。\n", + "模型训练结束后即可通过调用[train.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/airfoil/2D_steady/train.py)中的train函数,train_mode设置为eval可进行推理,设置为finetune可进行迁移学习。\n", "\n", "在设计新翼型时,需要考虑各种不同的初始边界条件(如不同的攻角或马赫数等),以进行气动性能的评估。为了提高模型的可推广性,从而提高其在工程场景中的效用,我们可以采用迁移学习的方式。具体做法为:先在大规模数据集预训练模型,最终在小数据集上进行快速的微调,从而实现模型对新工况的推理泛化。考虑到精度和时间消耗之间的权衡,我们一共考虑了四种不同大小的数据集去获取不同的预训练模型。与在较小数据集上进行预训练所需耗时较少,但预测精度较低;而在较大数据集上预训练,能够产生更准确的结果,但需要更多的预训练时间。\n", "\n", diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb index 71a291bd80..b9353cc6c4 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_FNO1D.ipynb @@ -130,7 +130,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/burgers/fno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/fno1d/src)下载。" + "下述`src`包可以在[applications/data_driven/burgers/fno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/fno1d/src)下载。" ] }, { @@ -157,7 +157,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "从[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)中获得模型、数据、优化器的参数。" + "从[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)中获得模型、数据、优化器的参数。" ] }, { @@ -248,7 +248,7 @@ "\n", "- Decoding layer对应代码中`FNO1D.fc1`与`FNO1D.fc2`,获得最终的预测值。\n", "\n", - "基于上述网络结构,进行模型初始化,其中模型参数可在[配置文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)中修改。" + "基于上述网络结构,进行模型初始化,其中模型参数可在[配置文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/configs/fno1d.yaml)中修改。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb index 94e861616a..9938eec6ca 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_KNO1D.ipynb @@ -145,7 +145,7 @@ } }, "source": [ - "下述`src`包可以在[applications/data_driven/burgers/kno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/kno1d/src)下载。" + "下述`src`包可以在[applications/data_driven/burgers/kno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/kno1d/src)下载。" ] }, { @@ -189,7 +189,7 @@ } }, "source": [ - "从[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/configs/kno1d.yaml)中获得模型、数据、优化器的超参。" + "从[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/configs/kno1d.yaml)中获得模型、数据、优化器的超参。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb index 5eff8ed6a6..54cbf7240d 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/burgers_SNO1D.ipynb @@ -125,7 +125,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/burgers/sno1d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/burgers/sno1d/src)下载。" + "下述`src`包可以在[applications/data_driven/burgers/sno1d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/burgers/sno1d/src)下载。" ] }, { @@ -152,7 +152,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "从[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)中获得模型、数据、优化器的超参。" + "从[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)中获得模型、数据、优化器的超参。" ] }, { @@ -232,7 +232,7 @@ "\n", "- 解码层对应`SNO1D.decoder`,由两个卷积组成。解码器用于获得最终预测。\n", "\n", - "基于上述网络结构,进行模型初始化,其中模型参数可在[配置文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)中修改。" + "基于上述网络结构,进行模型初始化,其中模型参数可在[配置文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/sno1d/configs/sno1d.yaml)中修改。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb index 58ba4dfec8..8bcf1bf0ca 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/flow_around_sphere.ipynb @@ -747,7 +747,7 @@ } }, "source": [ - "模型训练结束后,运行[eval.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/flow_around_sphere/eval.py),通过控制台控制需要读取的模型路径,在给定任意时刻的初始流场的条件下,快速、准确的推理未来长时间的三维流场。" + "模型训练结束后,运行[eval.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/flow_around_sphere/eval.py),通过控制台控制需要读取的模型路径,在给定任意时刻的初始流场的条件下,快速、准确的推理未来长时间的三维流场。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb index 312086886e..e498d861bf 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO2D.ipynb @@ -130,8 +130,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/navier_stokes/fno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno2d/src)下载。\n", - "配置文件可在[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/configs/fno2d.yaml)中修改。" + "下述`src`包可以在[applications/data_driven/navier_stokes/fno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno2d/src)下载。\n", + "配置文件可在[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/configs/fno2d.yaml)中修改。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb index 326a982857..8dbe0f8bca 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_FNO3D.ipynb @@ -124,7 +124,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/navier_stokes/fno3d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno3d/src)下载。\n" + "下述`src`包可以在[applications/data_driven/navier_stokes/fno3d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/fno3d/src)下载。\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb index 25c7b5a013..197bbef225 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_KNO2D.ipynb @@ -149,7 +149,7 @@ } }, "source": [ - "下述`src`包可以在[applications/data_driven/navier_stokes/kno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/kno2d/src)下载。" + "下述`src`包可以在[applications/data_driven/navier_stokes/kno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/kno2d/src)下载。" ] }, { @@ -194,7 +194,7 @@ } }, "source": [ - "从[config](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/configs/kno2d.yaml)中获得模型、数据、优化器的超参。" + "从[config](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/configs/kno2d.yaml)中获得模型、数据、优化器的超参。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb index 003baba46d..3c13574b02 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO2D.ipynb @@ -129,7 +129,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/navier_stokes/sno2d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno2d/src)下载。" + "下述`src`包可以在[applications/data_driven/navier_stokes/sno2d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno2d/src)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb index 35cdddc9cc..65c9eae707 100644 --- a/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_driven/navier_stokes_SNO3D.ipynb @@ -123,7 +123,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/data_driven/navier_stokes/sno3d/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno3d/src)下载。" + "下述`src`包可以在[applications/data_driven/navier_stokes/sno3d/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_driven/navier_stokes/sno3d/src)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb index 4bcdc81831..f7f6318cea 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/pde_net.ipynb @@ -126,7 +126,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`可以在[applications/data_mechanism_fusion/pde_net/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/data_mechanism_fusion/pde_net/src)下载。" + "下述`src`可以在[applications/data_mechanism_fusion/pde_net/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/data_mechanism_fusion/pde_net/src)下载。" ] }, { @@ -149,7 +149,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "所有配置参数可以在[configuration file](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/configs/pde_net.yaml)修改。" + "所有配置参数可以在[configuration file](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/configs/pde_net.yaml)修改。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb index 6146a34434..6cc01ddf57 100644 --- a/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb +++ b/docs/mindflow/docs/source_zh_cn/data_mechanism_fusion/phympgn.ipynb @@ -117,7 +117,7 @@ "source": [ "- 确保已安装相关依赖库,如MindSpore等\n", "- 确保已下载好[圆柱绕流数据](https://download-mindspore.osinfra.cn/mindscience/mindflow/dataset/applications/data_mechanism_fusion/PhyMPGN/)\n", - "- 确保在[yamls/train.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/phympgn/yamls/train.yaml)配置文件中已配置好数据和模型权重等相关保存路径" + "- 确保在[yamls/train.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/phympgn/yamls/train.yaml)配置文件中已配置好数据和模型权重等相关保存路径" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb b/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb index d64db55115..fda76c3bc1 100644 --- a/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb +++ b/docs/mindflow/docs/source_zh_cn/features/solve_pinns_by_mindflow.ipynb @@ -120,7 +120,7 @@ "source": [ "## 创建数据集\n", "\n", - "本案例根据求解域、边值条件进行随机采样,使用[Disk](https://mindspore.cn/mindflow/docs/zh-CN/master/geometry/mindflow.geometry.Disk.html#mindflow.geometry.Disk)和[CSGXOR](https://mindspore.cn/mindflow/docs/zh-CN/master/geometry/mindflow.geometry.CSGXOR.html#mindflow.geometry.CSGXOR)几何模块构建输入输出边界和作用域,生成训练数据集与测试数据集。`Disk`和`CSGXOR`由`MindSpore Flow`的[geometry](https://mindspore.cn/mindflow/docs/zh-CN/master/mindflow.geometry.html#)模块导入。下载数据生成的[Python文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/dataset.py)。" + "本案例根据求解域、边值条件进行随机采样,使用[Disk](https://mindspore.cn/mindflow/docs/zh-CN/master/geometry/mindflow.geometry.Disk.html#mindflow.geometry.Disk)和[CSGXOR](https://mindspore.cn/mindflow/docs/zh-CN/master/geometry/mindflow.geometry.CSGXOR.html#mindflow.geometry.CSGXOR)几何模块构建输入输出边界和作用域,生成训练数据集与测试数据集。`Disk`和`CSGXOR`由`MindSpore Flow`的[geometry](https://mindspore.cn/mindflow/docs/zh-CN/master/mindflow.geometry.html#)模块导入。下载数据生成的[Python文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/dataset.py)。" ] }, { @@ -418,7 +418,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "基于[Poisson](https://mindspore.cn/mindflow/docs/zh-CN/master/pde/mindflow.pde.Poisson.html#mindflow.pde.Poisson)基类结合上面定义的控制方程和边界条件,定义下述`Poisson2D`问题。`Poisson`基类由`MindSpore Flow`的[pde](https://mindspore.cn/mindflow/docs/zh-CN/master/mindflow.pde.html)模块导入。下载`Poisson2D`问题的[Python文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/model.py)。" + "基于[Poisson](https://mindspore.cn/mindflow/docs/zh-CN/master/pde/mindflow.pde.Poisson.html#mindflow.pde.Poisson)基类结合上面定义的控制方程和边界条件,定义下述`Poisson2D`问题。`Poisson`基类由`MindSpore Flow`的[pde](https://mindspore.cn/mindflow/docs/zh-CN/master/mindflow.pde.html)模块导入。下载`Poisson2D`问题的[Python文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/model.py)。" ] }, { @@ -480,7 +480,7 @@ "source": [ "## 模型训练\n", "\n", - "使用**MindSpore >= 2.0.0**的版本,采用函数式编程的方式训练网络。下载训练的[Python文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/train.py)。" + "使用**MindSpore >= 2.0.0**的版本,采用函数式编程的方式训练网络。下载训练的[Python文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/train.py)。" ] }, { @@ -510,7 +510,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下载训练过程计算损失的[Python文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)。" + "下载训练过程计算损失的[Python文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)。" ] }, { @@ -801,7 +801,7 @@ "source": [ "## 模型推理及可视化\n", "\n", - "训练后可对流场内所有数据点进行推理,并可视化相关结果。下载可视化结果的[Python文件](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)。" + "训练后可对流场内所有数据点进行推理,并可视化相关结果。下载可视化结果的[Python文件](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/features/solve_pinns_by_mindflow/src/utils.py)。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/index.rst b/docs/mindflow/docs/source_zh_cn/index.rst index d0a0ac954b..fa820fc452 100644 --- a/docs/mindflow/docs/source_zh_cn/index.rst +++ b/docs/mindflow/docs/source_zh_cn/index.rst @@ -3,13 +3,13 @@ MindSpore Flow介绍 流体仿真是指通过数值计算对给定边界条件下的流体控制方程进行求解,从而实现流动的分析、预测和控制,其在航空航天、船舶制造以及能源电力等行业领域的工程设计中应用广泛。传统流体仿真的数值方法如有限体积、有限差分等,主要依赖商业软件实现,需要进行物理建模、网格划分、数值离散、迭代求解等步骤,仿真过程较为复杂,计算周期长。AI具备强大的学习拟合和天然的并行推理能力,可以有效地提升流体仿真效率。 -`MindSpore Flow `_ 是基于昇思MindSpore开发的流体仿真领域套件,支持航空航天、船舶制造以及能源电力等行业领域的AI流场模拟,旨在于为广大的工业界科研工程人员、高校老师及学生提供高效易用的AI计算流体仿真软件。 +`MindSpore Flow `_ 是基于昇思MindSpore开发的流体仿真领域套件,支持航空航天、船舶制造以及能源电力等行业领域的AI流场模拟,旨在于为广大的工业界科研工程人员、高校老师及学生提供高效易用的AI计算流体仿真软件。 .. raw:: html -代码仓地址: +代码仓地址: .. toctree:: :glob: diff --git a/docs/mindflow/docs/source_zh_cn/mindflow_install.md b/docs/mindflow/docs/source_zh_cn/mindflow_install.md index 7ad8764be2..cd741e869a 100644 --- a/docs/mindflow/docs/source_zh_cn/mindflow_install.md +++ b/docs/mindflow/docs/source_zh_cn/mindflow_install.md @@ -6,7 +6,7 @@ - 硬件平台为Ascend、GPU。 - 参考[MindSpore安装指南](https://www.mindspore.cn/install),完成MindSpore的安装。 -- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/requirements.txt)。 +- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/requirements.txt)。 - MindSpore Flow需MindSpore版本>=2.5.0,Python版本需>=3.9。 ## 安装方式 diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb index d8272bf5bd..013b338641 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/burgers1D.ipynb @@ -91,7 +91,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/physics_driven/burgers/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/burgers/src)下载。" + "下述`src`包可以在[applications/physics_driven/burgers/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/burgers/src)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb index 3c82afdc8c..c76c1ecbca 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/darcy2D.ipynb @@ -80,7 +80,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/physics_driven/darcy/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/darcy/src)下载。" + "下述`src`包可以在[applications/physics_driven/darcy/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/darcy/src)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb index ff4bd4077b..681e2a119f 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/kovasznay.ipynb @@ -77,7 +77,7 @@ "source": [ "## 创建数据集\n", "\n", - "本案例在求解域及边值条件进行随机采样,生成训练数据集与测试数据集。具体方法见[src/dataset.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/kovasznay/src/dataset.py)。" + "本案例在求解域及边值条件进行随机采样,生成训练数据集与测试数据集。具体方法见[src/dataset.py](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/kovasznay/src/dataset.py)。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb index 7b7bbd3ead..e7d509ff85 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes2D.ipynb @@ -89,7 +89,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在[applications/physics_driven/navier_stokes/cylinder_flow_forward/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_forward/src)下载。" + "下述`src`包可以在[applications/physics_driven/navier_stokes/cylinder_flow_forward/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_forward/src)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb index 2fb8f69767..2bbf3dfd8b 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/navier_stokes_inverse.ipynb @@ -86,7 +86,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述 `src` 包可以在[applications/physics_driven/navier_stokes/cylinder_flow_inverse/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/src) 下载。" + "下述 `src` 包可以在[applications/physics_driven/navier_stokes/cylinder_flow_inverse/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/src) 下载。" ] }, { @@ -111,7 +111,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`inverse_navier_stokes.yaml`文件可以在[applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml)下载。" + "下述`inverse_navier_stokes.yaml`文件可以在[applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/cylinder_flow_inverse/configs/navier_stokes_inverse.yaml)下载。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb index 45a8fe57a5..c38b36ca75 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/periodic_hill.ipynb @@ -46,7 +46,7 @@ "source": [ "## 准备工作\n", "\n", - "导入训练所需函数库,其中[src文件夹](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/src)包括数据集处理函数、网络模型和损失值计算函数。\n", + "导入训练所需函数库,其中[src文件夹](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/src)包括数据集处理函数、网络模型和损失值计算函数。\n", "\n", "训练默认采用MindSpore框架的静态图模式(GRAPH),在GPU(默认)或Ascend进行训练(单卡)。" ] @@ -85,7 +85,7 @@ "source": [ "## 读取参数\n", "\n", - "从[rans.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml)文件里导入相应的数据集、模型和优化器的参数配置。" + "从[rans.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/periodic_hill/configs/rans.yaml)文件里导入相应的数据集、模型和优化器的参数配置。" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb index a9eebc9a6e..4fe4d9ef5c 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/poisson_geometry.ipynb @@ -55,7 +55,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`poisson_cfg.yaml`配置文件可以在[applications/physics_driven/poisson/point_source/poisson_cfg.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/poisson/point_source/poisson_cfg.yaml)下载,`src`包可以在[applications/physics_driven/poisson/point_source/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src)下载。\n" + "下述`poisson_cfg.yaml`配置文件可以在[applications/physics_driven/poisson/point_source/poisson_cfg.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/poisson/point_source/poisson_cfg.yaml)下载,`src`包可以在[applications/physics_driven/poisson/point_source/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/poisson/point_source/src)下载。\n" ] }, { diff --git a/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb b/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb index b55b585f96..92f88dbdef 100644 --- a/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb +++ b/docs/mindflow/docs/source_zh_cn/physics_driven/taylor_green2D.ipynb @@ -96,7 +96,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`src`包可以在 [applications/physics_driven/navier_stokes/taylor_green/src](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/src)下载。" + "下述`src`包可以在 [applications/physics_driven/navier_stokes/taylor_green/src](https://atomgit.com/mindspore/mindscience/tree/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/src)下载。" ] }, { @@ -120,7 +120,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "下述`taylor_green_2D.yaml`配置文件可以在[applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml)下载。" + "下述`taylor_green_2D.yaml`配置文件可以在[applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/physics_driven/navier_stokes/taylor_green/configs/taylor_green_2D.yaml)下载。" ] }, { diff --git a/docs/mindsponge/docs/source_en/index.rst b/docs/mindsponge/docs/source_en/index.rst index 05fbe9a7b6..338f9206ff 100644 --- a/docs/mindsponge/docs/source_en/index.rst +++ b/docs/mindsponge/docs/source_en/index.rst @@ -44,7 +44,7 @@ and application scenarios, such as: - High throughput molecular simulation; - Molecular design, etc. -Code repository address: +Code repository address: Installation ------------ @@ -178,7 +178,7 @@ Contribution Guide ------------------ - Please click here to see how to contribute your code:\ `Contribution - Guide `__ + Guide `__ .. toctree:: :glob: diff --git a/docs/mindsponge/docs/source_en/user/basic.md b/docs/mindsponge/docs/source_en/user/basic.md index 44a031d9f9..9d59fa5f54 100644 --- a/docs/mindsponge/docs/source_en/user/basic.md +++ b/docs/mindsponge/docs/source_en/user/basic.md @@ -8,7 +8,7 @@ In fields such as biological computing and drug design, it is very expensive to | Function | Model | Training | Inferring | Back-end | | :----------- | :------------------------------ | :--- | :--- | :-------- | -| Molecular Compound Pre-training Model | [GROVER](https://atomgit.com/mindspore-lab/mindscience/pulls/441/files#) | √ | √ | GPU/Ascend | -| Molecular Compound Pre-training Model | [MGBERT](https://atomgit.com/mindspore-lab/mindscience/pulls/631/files#) | √ | √ | GPU/Ascend | +| Molecular Compound Pre-training Model | [GROVER](https://atomgit.com/mindspore/mindscience/pulls/441/files#) | √ | √ | GPU/Ascend | +| Molecular Compound Pre-training Model | [MGBERT](https://atomgit.com/mindspore/mindscience/pulls/631/files#) | √ | √ | GPU/Ascend | In the future, basic models such as protein pre-training will be provided. Please stay tuned. \ No newline at end of file diff --git a/docs/mindsponge/docs/source_en/user/design.md b/docs/mindsponge/docs/source_en/user/design.md index 5559eff223..b8cd9827fa 100644 --- a/docs/mindsponge/docs/source_en/user/design.md +++ b/docs/mindsponge/docs/source_en/user/design.md @@ -10,7 +10,7 @@ MindSpore SPONGE Biocomputing Toolkit provides a series of molecular design tool | Function | Model | Training | Inferring | Back-end | | :----------- | :------------------------------ | :--- | :--- | :-------- | -| Protein Sequence Design | [ProteinMPNN](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | × | √ | GPU/Ascend | -| Protein Sequence Design | [ESM-IF1](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | × | √ | GPU/Ascend | +| Protein Sequence Design | [ProteinMPNN](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | × | √ | GPU/Ascend | +| Protein Sequence Design | [ESM-IF1](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | × | √ | GPU/Ascend | In the future, we will also provide antibody sequence design, molecular generation and other tools. Please stay tuned. \ No newline at end of file diff --git a/docs/mindsponge/docs/source_en/user/property_prediction.md b/docs/mindsponge/docs/source_en/user/property_prediction.md index 842f473893..afa3d95024 100644 --- a/docs/mindsponge/docs/source_en/user/property_prediction.md +++ b/docs/mindsponge/docs/source_en/user/property_prediction.md @@ -10,6 +10,6 @@ Molecular property prediction is one of the most important tasks in the computer | :------------- | :-------------------- | :--- | :--- | :-------- | | Drug Interaction Prediction | KGNN | √ | √ | GPU/Ascend | | Drug Disease Association Prediction | DeepDR | √ | √ | GPU/Ascend | -| Protein-Ligand Affinity Prediction | [pafnucy](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/pafnucy.md) | √ | √ | GPU/Ascend | +| Protein-Ligand Affinity Prediction | [pafnucy](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/pafnucy.md) | √ | √ | GPU/Ascend | Molecular docking, ADMET and other molecular property prediction networks will be provided in the future. Please stay tuned. \ No newline at end of file diff --git a/docs/mindsponge/docs/source_en/user/simulation.md b/docs/mindsponge/docs/source_en/user/simulation.md index ecc8d0a045..8157f02068 100644 --- a/docs/mindsponge/docs/source_en/user/simulation.md +++ b/docs/mindsponge/docs/source_en/user/simulation.md @@ -222,7 +222,7 @@ Thanks to the multi-tiered data structure of HDF5, H5MD itself is highly scalabl ## Tutorial -A tutorial on molecular dynamics simulations using the MindSpore SPONGE is available at [MindScience](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindSPONGE/tutorials/basic). +A tutorial on molecular dynamics simulations using the MindSpore SPONGE is available at [MindScience](https://atomgit.com/mindspore/mindscience/tree/master/MindSPONGE/tutorials/basic). ## Reference diff --git a/docs/mindsponge/docs/source_en/user/structure_prediction.md b/docs/mindsponge/docs/source_en/user/structure_prediction.md index 9c8cc76475..d5e086249f 100644 --- a/docs/mindsponge/docs/source_en/user/structure_prediction.md +++ b/docs/mindsponge/docs/source_en/user/structure_prediction.md @@ -10,10 +10,10 @@ Currently, a series of tools for protein and RNA structure prediction are availa | Function | Model | Training | Inferring | Back-end | | :------------- | :------------------------------------------- | :--- | :--- | :-------- | -| Single Chain Structure Prediction | [MEGA-Fold](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| MSA Generation/Correction | [MEGA-EvoGen](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| Structural Quality Assessment | [MEGA-Assessment](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| Multi-chain Structure Prediction | [AlphaFold-Multimer](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | × | √ | GPU/Ascend | -| RNA Secondary Structure Prediction | [UFold](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | √ | √ | GPU/Ascend | +| Single Chain Structure Prediction | [MEGA-Fold](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| MSA Generation/Correction | [MEGA-EvoGen](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| Structural Quality Assessment | [MEGA-Assessment](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| Multi-chain Structure Prediction | [AlphaFold-Multimer](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | × | √ | GPU/Ascend | +| RNA Secondary Structure Prediction | [UFold](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | √ | √ | GPU/Ascend | In the future, we will further improve the function of molecular structure prediction, and introduce more tools for protein-ligand complex structure prediction and small molecule structure prediction of compounds. Stay tuned for more information. \ No newline at end of file diff --git a/docs/mindsponge/docs/source_zh_cn/index.rst b/docs/mindsponge/docs/source_zh_cn/index.rst index 188fee2db8..2bbccc07a0 100644 --- a/docs/mindsponge/docs/source_zh_cn/index.rst +++ b/docs/mindsponge/docs/source_zh_cn/index.rst @@ -25,7 +25,7 @@ MindSpore SPONGE是一款基于MindSpore的计算生物领域套件,支持分 - 高通量的分子模拟; - 分子设计等。 -代码仓地址: +代码仓地址: MindSpore SPONGE 安装说明 ------------------------- @@ -136,7 +136,7 @@ SPONGE暑期学校第二季 `__\ 。 +- 如何贡献您的代码,请点击此处查看:\ `贡献指南 `__\ 。 .. toctree:: :glob: diff --git a/docs/mindsponge/docs/source_zh_cn/user/basic.md b/docs/mindsponge/docs/source_zh_cn/user/basic.md index 2cec1b86eb..dfeb06abcb 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/basic.md +++ b/docs/mindsponge/docs/source_zh_cn/user/basic.md @@ -8,7 +8,7 @@ | 功能 | 模型 | 训练 | 推理 | 后端 | | :----------- | :------------------------------ | :--- | :--- | :-------- | -| 小分子化合物预训练模型 | [GROVER](https://atomgit.com/mindspore-lab/mindscience/pulls/441/files#) | √ | √ | GPU/Ascend | -| 小分子化合物预训练模型 | [MGBERT](https://atomgit.com/mindspore-lab/mindscience/pulls/631/files#) | √ | √ | GPU/Ascend | +| 小分子化合物预训练模型 | [GROVER](https://atomgit.com/mindspore/mindscience/pulls/441/files#) | √ | √ | GPU/Ascend | +| 小分子化合物预训练模型 | [MGBERT](https://atomgit.com/mindspore/mindscience/pulls/631/files#) | √ | √ | GPU/Ascend | 后续将提供蛋白质预训练等基础模型,敬请期待。 \ No newline at end of file diff --git a/docs/mindsponge/docs/source_zh_cn/user/design.md b/docs/mindsponge/docs/source_zh_cn/user/design.md index 55ee91f406..47f6296ef9 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/design.md +++ b/docs/mindsponge/docs/source_zh_cn/user/design.md @@ -10,7 +10,7 @@ MindSpore SPONGE生物计算工具包提供一系列基于深度生成模型的 | 功能 | 模型 | 训练 | 推理 | 后端 | | :----------- | :------------------------------ | :--- | :--- | :-------- | -| 蛋白质序列设计 | [ProteinMPNN](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | × | √ | GPU/Ascend | -| 蛋白质序列设计 | [ESM-IF1](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | × | √ | GPU/Ascend | +| 蛋白质序列设计 | [ProteinMPNN](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | × | √ | GPU/Ascend | +| 蛋白质序列设计 | [ESM-IF1](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | × | √ | GPU/Ascend | 未来我们还将提供抗体序列设计,分子生成等工具,敬请期待。 \ No newline at end of file diff --git a/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md b/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md index 01296b1bb6..c5e3536f40 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md +++ b/docs/mindsponge/docs/source_zh_cn/user/property_prediction.md @@ -10,6 +10,6 @@ | :------------- | :-------------------- | :--- | :--- | :-------- | | 药物相互作用预测 | KGNN | √ | √ | GPU/Ascend | | 药物疾病关联预测 | DeepDR | √ | √ | GPU/Ascend | -| 蛋白质-配体亲和力预测 | [pafnucy](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/pafnucy.md) | √ | √ | GPU/Ascend | +| 蛋白质-配体亲和力预测 | [pafnucy](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/pafnucy.md) | √ | √ | GPU/Ascend | 后续将提供分子对接,ADMET等分子性质预测网络,敬请期待。 \ No newline at end of file diff --git a/docs/mindsponge/docs/source_zh_cn/user/simulation.md b/docs/mindsponge/docs/source_zh_cn/user/simulation.md index 22567e476d..57f874e366 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/simulation.md +++ b/docs/mindsponge/docs/source_zh_cn/user/simulation.md @@ -221,7 +221,7 @@ MindSpore SPONGE采用H5MD作为记录模拟轨迹的默认文件格式。H5MD ## 使用教程 -使用MindSpore SPONGE进行分子动力学模拟的教程可在[MindScience仓库](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindSPONGE/tutorials/basic)进行查看。 +使用MindSpore SPONGE进行分子动力学模拟的教程可在[MindScience仓库](https://atomgit.com/mindspore/mindscience/tree/master/MindSPONGE/tutorials/basic)进行查看。 ## 参考文献 diff --git a/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md b/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md index c269bb5ca2..b3e970a779 100644 --- a/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md +++ b/docs/mindsponge/docs/source_zh_cn/user/structure_prediction.md @@ -10,10 +10,10 @@ | 功能 | 模型 | 训练 | 推理 | 后端 | | :------------- | :------------------------------------------- | :--- | :--- | :-------- | -| 单链结构预测 | [MEGA-Fold](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| MSA生成/修正 | [MEGA-EvoGen](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| 结构质量评估 | [MEGA-Assessment](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | -| 多链结构预测 | [AlphaFold-Multimer](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | × | √ | GPU/Ascend | -| RNA二级结构预测 | [UFold](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | √ | √ | GPU/Ascend | +| 单链结构预测 | [MEGA-Fold](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| MSA生成/修正 | [MEGA-EvoGen](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| 结构质量评估 | [MEGA-Assessment](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | √ | √ | GPU/Ascend | +| 多链结构预测 | [AlphaFold-Multimer](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | × | √ | GPU/Ascend | +| RNA二级结构预测 | [UFold](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | √ | √ | GPU/Ascend | 未来我们将进一步完善分子结构预测的相关功能,推出蛋白质-配体复合结构预测以及化合物小分子结构预测等更多工具,敬请期待。 \ No newline at end of file diff --git a/docs/sciai/docs/source_en/build_model_with_sciai.md b/docs/sciai/docs/source_en/build_model_with_sciai.md index 3ae4477f21..b6abcdb713 100644 --- a/docs/sciai/docs/source_en/build_model_with_sciai.md +++ b/docs/sciai/docs/source_en/build_model_with_sciai.md @@ -7,7 +7,7 @@ SciAI base framework consists of several modules covering network setup, network The following examples indicates the fundamental processes in using SciAI to build a neural network model. > You can download the full sample code here: -> +> ## Model Building Basics @@ -19,7 +19,7 @@ $$ f(x) = {x_1}^2 + sin(x_2) $$ -For the codes of this part, please refer to the [codes](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/tutorial/example_net.py). +For the codes of this part, please refer to the [codes](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/tutorial/example_net.py). ### Setup Neural Networks @@ -177,7 +177,7 @@ $$ f(x) = \frac{x^2}{0.2 x^5 + 0.8}. $$ -For the codes of this part, please refer to [codes](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/tutorial/example_grad_net.py). +For the codes of this part, please refer to [codes](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/tutorial/example_grad_net.py). ### Loss Definition diff --git a/docs/sciai/docs/source_en/installation.md b/docs/sciai/docs/source_en/installation.md index 11348b8923..b80babb987 100644 --- a/docs/sciai/docs/source_en/installation.md +++ b/docs/sciai/docs/source_en/installation.md @@ -9,7 +9,7 @@ - See [MindSpore Installation Guide](https://www.mindspore.cn/install/en) to install MindSpore. The versions of MindSpore Elec and MindSpore must be consistent. - All other dependencies are included - in [requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/requirements.txt). + in [requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/requirements.txt). ## Installation diff --git a/docs/sciai/docs/source_en/launch_with_api.md b/docs/sciai/docs/source_en/launch_with_api.md index e9b3f20bd9..194ffd375c 100644 --- a/docs/sciai/docs/source_en/launch_with_api.md +++ b/docs/sciai/docs/source_en/launch_with_api.md @@ -10,7 +10,7 @@ User can launch training and evaluation process with `AutoModel`. User can use the function `AutoModel.from_pretrained` to get the network models, which are supported in SciAI. -Here we use the model Conservative Physics-Informed Neural Networks (CPINNs) as example. For the codes of CPINNs model, please refer to the [link](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model/cpinns). +Here we use the model Conservative Physics-Informed Neural Networks (CPINNs) as example. For the codes of CPINNs model, please refer to the [link](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model/cpinns). The fundamental idea about this model can be found in this [paper](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127). diff --git a/docs/sciai/docs/source_en/launch_with_scripts.md b/docs/sciai/docs/source_en/launch_with_scripts.md index 05427c15a6..0ec85faf2a 100644 --- a/docs/sciai/docs/source_en/launch_with_scripts.md +++ b/docs/sciai/docs/source_en/launch_with_scripts.md @@ -4,9 +4,9 @@ The models in MindSpore SciAI provides users with scripts for training and evaluation. -User can train or evaluate any model by running scripts, and the model parameters can be adjusted either through editing the config file or passing parameters in the command line. [This folder](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model) contains all the models that support launching with scripts. +User can train or evaluate any model by running scripts, and the model parameters can be adjusted either through editing the config file or passing parameters in the command line. [This folder](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model) contains all the models that support launching with scripts. -The following content introduces the general process of training, evaluating models with scripts, taking Conservative Physics-Informed Neural Networks(CPINNs) as an example. For the codes of CPINNs model, please refer to the [link](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model/cpinns). +The following content introduces the general process of training, evaluating models with scripts, taking Conservative Physics-Informed Neural Networks(CPINNs) as an example. For the codes of CPINNs model, please refer to the [link](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model/cpinns). The fundamental idea about this model can be found in this [paper](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127). @@ -19,7 +19,7 @@ git clone https://atomgit.com/mindspore-lab/mindscience source ./mindscience/SciAI/.env ``` -After a successful clone, user can start training or evaluating according to the `Quick Start` section in the [README.md](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md)(In case of CPINNs). +After a successful clone, user can start training or evaluating according to the `Quick Start` section in the [README.md](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md)(In case of CPINNs). ```bash cd ./mindscience/SciAI/sciai/model/cpinns/ @@ -27,7 +27,7 @@ cd ./mindscience/SciAI/sciai/model/cpinns/ ## Training and Fine-tuning the Model -User can run script [train.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/train.py) in each model directory to train the models. +User can run script [train.py](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/train.py) in each model directory to train the models. ```bash python ./train.py [--parameters] @@ -47,7 +47,7 @@ python ./train.py --load_ckpt true --load_ckpt_path {your_file}.ckpt [--paramete Using the optional parameter `[--parameters]`, user can configure the training process of the model, including learning rate, training epochs, data saving and loading paths and so on. -For details about the configurable parameters in each model, see the `Script Parameters` section in the [README.md](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md). +For details about the configurable parameters in each model, see the `Script Parameters` section in the [README.md](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md). ## Evaluating the Model diff --git a/docs/sciai/docs/source_en/model_library.md b/docs/sciai/docs/source_en/model_library.md index 978db6f358..6c28d867e7 100644 --- a/docs/sciai/docs/source_en/model_library.md +++ b/docs/sciai/docs/source_en/model_library.md @@ -7,68 +7,68 @@ The following table summarizes the current available neural networks and their c | Domain | Network | MindSpore Implementation and Parameters | Ascend | GPU | |---------------------|-----------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------:|:---:| -| General Physics | [auq_pinns](https://www.sciencedirect.com/science/article/pii/S0021999119303584) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/auq_pinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [cpinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [deep_hpms](https://www.jmlr.org/papers/volume19/18-046/18-046.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deep_hpms/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [deep_ritz](https://arxiv.org/abs/1710.00211) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deep_ritz/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [deepbsde](https://www.pnas.org/doi/10.1073/pnas.1718942115) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deepbsde/README.md#script-parameters) | | ✅ | -| General Physics | [deeponet](https://www.nature.com/articles/s42256-021-00302-5) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deeponet/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [dgm](https://arxiv.org/abs/1708.07469) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/dgm/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [fbsnns](https://arxiv.org/abs/1804.07010) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/fbsnns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [fpinns](https://arxiv.org/abs/1811.08967) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/fpinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [gradient_pathologies_pinns](https://arxiv.org/abs/2001.04536) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/gradient_pathologies_pinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [hp_vpinns](https://arxiv.org/abs/2003.05385) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/hp_vpinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [laaf](https://doi.org/10.1016/j.jcp.2019.109136) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/laaf/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [mgnet](https://link.springer.com/article/10.1007/s11425-019-9547-2) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/mgnet/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [multiscale_pinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782521002759) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/multiscale_pinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [pfnn](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308597) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pfnn/README_CN.md#脚本说明) | | ✅ | -| General Physics | [phygeonet](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308536) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/phygeonet/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [pi_deeponet](https://www.sciencedirect.com/science/article/abs/pii/S0021999122009184) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pi_deeponet/README.md#script-parameters) | | ✅ | -| General Physics | [pinns](https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns/README.md#script-parameters) | | ✅ | -| General Physics | [pinns_ntk](https://www.sciencedirect.com/science/article/pii/S002199912100663X) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns_ntk/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [ppinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520304357) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/ppinns/README.md#script-parameters) | ✅ | ✅ | -| General Physics | [xpinns](https://doi.org/10.4208/cicp.OA-2020-0164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/xpinns/README.md#script-parameters) | ✅ | ✅ | -| Hamiltonian Systems | [sympnets](https://www.sciencedirect.com/science/article/pii/S0893608020303063) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/sympnets/README.md#script-parameters) | ✅ | ✅ | -| Fluid Dynamic | [hfm](https://www.science.org/doi/abs/10.1126/science.aaw4741) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/hfm/README.md#script-parameters) | ✅ | ✅ | -| Fluid Dynamic | [label_free_dnn_surrogate](https://www.sciencedirect.com/science/article/pii/S004578251930622X) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/label_free_dnn_surrogate/README.md#script-parameters) | ✅ | ✅ | -| Fluid Dynamic | [nsf_nets](https://www.sciencedirect.com/science/article/pii/S0021999120307257) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/nsf_nets/README.md#script-parameters) | ✅ | ✅ | -| Fluid Dynamic | [*burgers_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/FNO1D.ipynb) | ✅ | ✅ | -| Fluid Dynamic | [*burgers_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/KNO1D.ipynb) | ✅ | ✅ | -| Fluid Dynamic | [*navier_stokes_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/FNO2D.ipynb) | ✅ | ✅ | -| Fluid Dynamic | [*navier_stokes_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/KNO2D.ipynb) | ✅ | ✅ | -| Fluid Dynamic | [*navier_stokes_3d_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno3d/FNO3D.ipynb) | ✅ | ✅ | -| Fluid Dynamic | [*pde_net](https://arxiv.org/abs/1710.09668) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/README.md) | ✅ | ✅ | -| Fluid Dynamic | [*percnn](https://www.nature.com/articles/s42256-023-00685-7) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/percnn/README.md) | ✅ | ✅ | -| Elastodynamics | [pinn_elastodynamics](https://arxiv.org/abs/2006.08472) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_elastodynamics/README.md#script-parameters) | ✅ | ✅ | -| Thermodynamics | [pinn_heattransfer](https://arxiv.org/abs/1711.10561) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_heattransfer/README.md#script-parameters) | ✅ | ✅ | -| Meteorology | [enso](https://doi.org/10.1038/s41586-019-1559-7) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/enso/README.md#script-parameters) | ✅ | ✅ | -| Geology | [inversion_net](https://ieeexplore.ieee.org/abstract/document/8918045/) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/inversion_net/README.md#script-parameters) | ✅ | ✅ | -| Geology | [pinn_helmholtz](https://academic.oup.com/gji/article-abstract/228/3/1750/6409132) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_helmholtz/README.md#script-parameters) | ✅ | ✅ | -| Oceanic Physics | [ocean_model](https://gmd.copernicus.org/articles/12/4729/2019/) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/ocean_model/README.md#Model-Description) | | ✅ | -| Oceanic Physics | [pinns_swe](https://arxiv.org/abs/2104.00615) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns_swe/README.md#script-parameters) | ✅ | ✅ | -| Electromagnetism | [maxwell_net](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/maxwell_net/README.md#script-parameters) | ✅ | ✅ | -| Electromagnetism | [*AD_FDTD_invert_f](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README.md#script-parameters) | | ✅ | -| Electromagnetism | [*AD_FDTD_microstrip_filter](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README.md#script-parameters) | | ✅ | -| Electromagnetism | [*AD_FDTD_inverse](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_inverse/README.md#script-parameters) | | ✅ | -| Electromagnetism | [*frequency_domain_maxwell](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell/README.md#script-parameters) | ✅ | ✅ | -| Electromagnetism | [*frequency_domain_maxwell_3D_dielectric_slab](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/dielectric_slab_3d/README.md#脚本参数) | ✅ | ✅ | -| Electromagnetism | [*frequency_domain_maxwell_3D_waveguide_cavity](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/waveguide_cavity_3d/README.md#脚本参数) | ✅ | ✅ | -| Electromagnetism | [*meta_auto_decoder](https://arxiv.org/abs/2111.08823) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/incremental_learning/README.md#script-parameters) | ✅ | ✅ | -| Electromagnetism | [*pinn_fwi](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB023120) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/pinn_fwi/README.md) | ✅ | ✅ | -| Electromagnetism | [*SED_ANN](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindElec/examples/data_driven/sed_ann) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/data_driven/sed_ann/README_CN.md) | ✅ | ✅ | -| Electromagnetism | [*time_domain_maxwell](https://www.ijcai.org/proceedings/2022/533) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/time_domain_maxwell/README.md#script-parameters) | ✅ | ✅ | -| Electromagnetism | [*metasurface_holograms](https://www.researching.cn/articles/OJ44d3746c3db8c1e1) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/metasurface/metasurface_holograms/README.md#parameters) | ✅ | ✅ | -| Biology | [*MEGA-Fold](https://arxiv.org/abs/2206.12240v1) | [link (inference)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (training)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| Biology | [*MEGA-EvoGen](https://arxiv.org/abs/2208.09652) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| Biology | [*MEGA-Assessment](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | [link (inference)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (training)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| Biology | [*ColabDesign](https://www.biorxiv.org/content/10.1101/2021.11.10.468128.abstract) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ColabDesign.md) | ✅ | ✅ | -| Biology | [*DeepFRI](https://www.nature.com/articles/s41467-021-23303-9) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/DeepFri.md) | ✅ | ✅ | -| Biology | [*Multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | ✅ | ✅ | -| Biology | [*ProteinMPNN](https://www.science.org/doi/abs/10.1126/science.add2187) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | ✅ | ✅ | -| Biology | [*UFold](https://doi.org/10.1093/nar/gkab1074) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | ✅ | ✅ | -| Biology | [*esm-if1](https://proceedings.mlr.press/v162/hsu22a.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | ✅ | ✅ | -| Biology | [*esm2](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-2.md) | ✅ | ✅ | -| Biology | [*grover](https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/GROVER.MD) | ✅ | ✅ | +| General Physics | [auq_pinns](https://www.sciencedirect.com/science/article/pii/S0021999119303584) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/auq_pinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [cpinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [deep_hpms](https://www.jmlr.org/papers/volume19/18-046/18-046.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deep_hpms/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [deep_ritz](https://arxiv.org/abs/1710.00211) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deep_ritz/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [deepbsde](https://www.pnas.org/doi/10.1073/pnas.1718942115) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deepbsde/README.md#script-parameters) | | ✅ | +| General Physics | [deeponet](https://www.nature.com/articles/s42256-021-00302-5) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deeponet/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [dgm](https://arxiv.org/abs/1708.07469) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/dgm/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [fbsnns](https://arxiv.org/abs/1804.07010) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/fbsnns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [fpinns](https://arxiv.org/abs/1811.08967) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/fpinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [gradient_pathologies_pinns](https://arxiv.org/abs/2001.04536) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/gradient_pathologies_pinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [hp_vpinns](https://arxiv.org/abs/2003.05385) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/hp_vpinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [laaf](https://doi.org/10.1016/j.jcp.2019.109136) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/laaf/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [mgnet](https://link.springer.com/article/10.1007/s11425-019-9547-2) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/mgnet/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [multiscale_pinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782521002759) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/multiscale_pinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [pfnn](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308597) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pfnn/README_CN.md#脚本说明) | | ✅ | +| General Physics | [phygeonet](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308536) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/phygeonet/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [pi_deeponet](https://www.sciencedirect.com/science/article/abs/pii/S0021999122009184) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pi_deeponet/README.md#script-parameters) | | ✅ | +| General Physics | [pinns](https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns/README.md#script-parameters) | | ✅ | +| General Physics | [pinns_ntk](https://www.sciencedirect.com/science/article/pii/S002199912100663X) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns_ntk/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [ppinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520304357) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/ppinns/README.md#script-parameters) | ✅ | ✅ | +| General Physics | [xpinns](https://doi.org/10.4208/cicp.OA-2020-0164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/xpinns/README.md#script-parameters) | ✅ | ✅ | +| Hamiltonian Systems | [sympnets](https://www.sciencedirect.com/science/article/pii/S0893608020303063) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/sympnets/README.md#script-parameters) | ✅ | ✅ | +| Fluid Dynamic | [hfm](https://www.science.org/doi/abs/10.1126/science.aaw4741) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/hfm/README.md#script-parameters) | ✅ | ✅ | +| Fluid Dynamic | [label_free_dnn_surrogate](https://www.sciencedirect.com/science/article/pii/S004578251930622X) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/label_free_dnn_surrogate/README.md#script-parameters) | ✅ | ✅ | +| Fluid Dynamic | [nsf_nets](https://www.sciencedirect.com/science/article/pii/S0021999120307257) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/nsf_nets/README.md#script-parameters) | ✅ | ✅ | +| Fluid Dynamic | [*burgers_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/FNO1D.ipynb) | ✅ | ✅ | +| Fluid Dynamic | [*burgers_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/KNO1D.ipynb) | ✅ | ✅ | +| Fluid Dynamic | [*navier_stokes_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/FNO2D.ipynb) | ✅ | ✅ | +| Fluid Dynamic | [*navier_stokes_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/KNO2D.ipynb) | ✅ | ✅ | +| Fluid Dynamic | [*navier_stokes_3d_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno3d/FNO3D.ipynb) | ✅ | ✅ | +| Fluid Dynamic | [*pde_net](https://arxiv.org/abs/1710.09668) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/README.md) | ✅ | ✅ | +| Fluid Dynamic | [*percnn](https://www.nature.com/articles/s42256-023-00685-7) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/percnn/README.md) | ✅ | ✅ | +| Elastodynamics | [pinn_elastodynamics](https://arxiv.org/abs/2006.08472) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_elastodynamics/README.md#script-parameters) | ✅ | ✅ | +| Thermodynamics | [pinn_heattransfer](https://arxiv.org/abs/1711.10561) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_heattransfer/README.md#script-parameters) | ✅ | ✅ | +| Meteorology | [enso](https://doi.org/10.1038/s41586-019-1559-7) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/enso/README.md#script-parameters) | ✅ | ✅ | +| Geology | [inversion_net](https://ieeexplore.ieee.org/abstract/document/8918045/) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/inversion_net/README.md#script-parameters) | ✅ | ✅ | +| Geology | [pinn_helmholtz](https://academic.oup.com/gji/article-abstract/228/3/1750/6409132) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_helmholtz/README.md#script-parameters) | ✅ | ✅ | +| Oceanic Physics | [ocean_model](https://gmd.copernicus.org/articles/12/4729/2019/) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/ocean_model/README.md#Model-Description) | | ✅ | +| Oceanic Physics | [pinns_swe](https://arxiv.org/abs/2104.00615) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns_swe/README.md#script-parameters) | ✅ | ✅ | +| Electromagnetism | [maxwell_net](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/maxwell_net/README.md#script-parameters) | ✅ | ✅ | +| Electromagnetism | [*AD_FDTD_invert_f](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README.md#script-parameters) | | ✅ | +| Electromagnetism | [*AD_FDTD_microstrip_filter](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README.md#script-parameters) | | ✅ | +| Electromagnetism | [*AD_FDTD_inverse](https://www.mindspore.cn/mindelec/docs/en/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_inverse/README.md#script-parameters) | | ✅ | +| Electromagnetism | [*frequency_domain_maxwell](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell/README.md#script-parameters) | ✅ | ✅ | +| Electromagnetism | [*frequency_domain_maxwell_3D_dielectric_slab](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/dielectric_slab_3d/README.md#脚本参数) | ✅ | ✅ | +| Electromagnetism | [*frequency_domain_maxwell_3D_waveguide_cavity](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/waveguide_cavity_3d/README.md#脚本参数) | ✅ | ✅ | +| Electromagnetism | [*meta_auto_decoder](https://arxiv.org/abs/2111.08823) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/incremental_learning/README.md#script-parameters) | ✅ | ✅ | +| Electromagnetism | [*pinn_fwi](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB023120) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/pinn_fwi/README.md) | ✅ | ✅ | +| Electromagnetism | [*SED_ANN](https://atomgit.com/mindspore/mindscience/tree/master/MindElec/examples/data_driven/sed_ann) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/data_driven/sed_ann/README_CN.md) | ✅ | ✅ | +| Electromagnetism | [*time_domain_maxwell](https://www.ijcai.org/proceedings/2022/533) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/time_domain_maxwell/README.md#script-parameters) | ✅ | ✅ | +| Electromagnetism | [*metasurface_holograms](https://www.researching.cn/articles/OJ44d3746c3db8c1e1) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/metasurface/metasurface_holograms/README.md#parameters) | ✅ | ✅ | +| Biology | [*MEGA-Fold](https://arxiv.org/abs/2206.12240v1) | [link (inference)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (training)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| Biology | [*MEGA-EvoGen](https://arxiv.org/abs/2208.09652) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| Biology | [*MEGA-Assessment](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | [link (inference)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (training)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| Biology | [*ColabDesign](https://www.biorxiv.org/content/10.1101/2021.11.10.468128.abstract) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ColabDesign.md) | ✅ | ✅ | +| Biology | [*DeepFRI](https://www.nature.com/articles/s41467-021-23303-9) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/DeepFri.md) | ✅ | ✅ | +| Biology | [*Multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | ✅ | ✅ | +| Biology | [*ProteinMPNN](https://www.science.org/doi/abs/10.1126/science.add2187) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | ✅ | ✅ | +| Biology | [*UFold](https://doi.org/10.1093/nar/gkab1074) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | ✅ | ✅ | +| Biology | [*esm-if1](https://proceedings.mlr.press/v162/hsu22a.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | ✅ | ✅ | +| Biology | [*esm2](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-2.md) | ✅ | ✅ | +| Biology | [*grover](https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/GROVER.MD) | ✅ | ✅ | Note: the "*" in the model names indicates that these models have already been released at an earlier time by MindSpore and MindScience. \ No newline at end of file diff --git a/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md b/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md index b21d2a12ad..a5c61ae3b7 100644 --- a/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md +++ b/docs/sciai/docs/source_zh_cn/build_model_with_sciai.md @@ -7,7 +7,7 @@ SciAI基础框架由若干基础模块构成,涵盖有神经网络搭建、训 如下的示例展示了使用SciAI构建神经网络模型并进行训练的流程。 > 你可以在这里下载完整的样例代码: -> +> ## 模型构建基础 @@ -19,7 +19,7 @@ $$ f(x) = {x_1}^2 + sin(x_2) $$ -该部分完整代码请参考[代码](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/tutorial/example_net.py)。 +该部分完整代码请参考[代码](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/tutorial/example_net.py)。 ### 模型搭建 @@ -177,7 +177,7 @@ $$ f(x) = \frac{x^2}{0.2 x^5 + 0.8} $$ -该部分完整代码请参考[代码](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/tutorial/example_grad_net.py)。 +该部分完整代码请参考[代码](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/tutorial/example_grad_net.py)。 ### 损失函数定义 diff --git a/docs/sciai/docs/source_zh_cn/installation.md b/docs/sciai/docs/source_zh_cn/installation.md index ac66ba84dd..38a6148fd5 100644 --- a/docs/sciai/docs/source_zh_cn/installation.md +++ b/docs/sciai/docs/source_zh_cn/installation.md @@ -7,7 +7,7 @@ - 硬件平台为Ascend或GPU。 - 参考[MindSpore安装指南](https://www.mindspore.cn/install),完成MindSpore的安装。 -- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/requirements.txt)。 +- 其余依赖请参见[requirements.txt](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/requirements.txt)。 ## 安装方式 diff --git a/docs/sciai/docs/source_zh_cn/launch_with_api.md b/docs/sciai/docs/source_zh_cn/launch_with_api.md index 04b374ca15..a058b14830 100644 --- a/docs/sciai/docs/source_zh_cn/launch_with_api.md +++ b/docs/sciai/docs/source_zh_cn/launch_with_api.md @@ -10,7 +10,7 @@ MindSpore SciAI为用户提供了高阶API接口`AutoModel`。借助`AutoModel` 用户可以使用`AutoModel.from_pretrained`接口获取已支持的网络模型。 -这里使用Conservatice Physics-Informed Neural Networks (CPINNs) 作为教学案例。CPINNs模型相关代码请参考[链接](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model/cpinns)。 +这里使用Conservatice Physics-Informed Neural Networks (CPINNs) 作为教学案例。CPINNs模型相关代码请参考[链接](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model/cpinns)。 更多关于该模型的信息,请参考[论文](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127)。 diff --git a/docs/sciai/docs/source_zh_cn/launch_with_scripts.md b/docs/sciai/docs/source_zh_cn/launch_with_scripts.md index aea9d8c561..f3337bbfcc 100644 --- a/docs/sciai/docs/source_zh_cn/launch_with_scripts.md +++ b/docs/sciai/docs/source_zh_cn/launch_with_scripts.md @@ -4,9 +4,9 @@ MindSpore SciAI中的模型为用户提供了训练与评估的脚本文件。 -通过模型的脚本文件,用户可以直接启动某个模型的训练与评估,并通过修改配置文件或是传入命令行参数的方式调整模型参数。[该目录](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model)中包含了所有支持脚本启动的模型。 +通过模型的脚本文件,用户可以直接启动某个模型的训练与评估,并通过修改配置文件或是传入命令行参数的方式调整模型参数。[该目录](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model)中包含了所有支持脚本启动的模型。 -下面使用模型Conservative Physics-Informed Neural Networks(CPINNs)介绍使用脚本训练、评估模型的基本通用流程。CPINNs模型相关代码请参考[链接](https://atomgit.com/mindspore-lab/mindscience/tree/master/SciAI/sciai/model/cpinns)。 +下面使用模型Conservative Physics-Informed Neural Networks(CPINNs)介绍使用脚本训练、评估模型的基本通用流程。CPINNs模型相关代码请参考[链接](https://atomgit.com/mindspore/mindscience/tree/master/SciAI/sciai/model/cpinns)。 更多关于该模型的信息,请参考[论文](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127)。 @@ -19,7 +19,7 @@ git clone https://atomgit.com/mindspore-lab/mindscience source ./mindscience/SciAI/.env ``` -克隆完成后,用户可以按照模型[README_CN.md](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md)(以模型CPINNs为例)中的`快速开始`章节,使用脚本进行训练与推理。 +克隆完成后,用户可以按照模型[README_CN.md](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md)(以模型CPINNs为例)中的`快速开始`章节,使用脚本进行训练与推理。 ```bash cd ./mindscience/SciAI/sciai/model/cpinns/ @@ -27,7 +27,7 @@ cd ./mindscience/SciAI/sciai/model/cpinns/ ## 训练、微调模型 -用户可以使用训练脚本[train.py](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/train.py)进行网络模型训练。 +用户可以使用训练脚本[train.py](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/train.py)进行网络模型训练。 ```bash python ./train.py [--parameters] @@ -47,7 +47,7 @@ python ./train.py --load_ckpt true --load_ckpt_path {your_file}.ckpt [--paramete 使用可选参数`[--parameters]`可以配置模型的训练过程,包括学习率、训练周期、数据读取保存路径等。 -具体可配置的参数列表请参考[README_CN.md](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md)中`脚本参数`章节。 +具体可配置的参数列表请参考[README_CN.md](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md)中`脚本参数`章节。 ## 评估模型 diff --git a/docs/sciai/docs/source_zh_cn/model_library.md b/docs/sciai/docs/source_zh_cn/model_library.md index 44ca155f07..ce448767eb 100644 --- a/docs/sciai/docs/source_zh_cn/model_library.md +++ b/docs/sciai/docs/source_zh_cn/model_library.md @@ -6,67 +6,67 @@ SciAI基础模型库提供了丰富的科学计算高频模型,下表中汇总 | 领域 | 模型 | MindSpore实现与网络参数 | Ascend | GPU | |-------|--------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------:|:---:| -| 通用物理 | [auq_pinns](https://www.sciencedirect.com/science/article/pii/S0021999119303584) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/auq_pinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [cpinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [deep_hpms](https://www.jmlr.org/papers/volume19/18-046/18-046.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deep_hpms/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [deep_ritz](https://arxiv.org/abs/1710.00211) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deep_ritz/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [deepbsde](https://www.pnas.org/doi/10.1073/pnas.1718942115) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deepbsde/README.md#script-parameters) | | ✅ | -| 通用物理 | [deeponet](https://www.nature.com/articles/s42256-021-00302-5) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/deeponet/README_CN.md#脚本参数) | | ✅ | -| 通用物理 | [dgm](https://arxiv.org/abs/1708.07469) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/dgm/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [fbsnns](https://arxiv.org/abs/1804.07010) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/fbsnns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [fpinns](https://arxiv.org/abs/1811.08967) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/fpinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [gradient_pathologies_pinns](https://arxiv.org/abs/2001.04536) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/gradient_pathologies_pinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [hp_vpinns](https://arxiv.org/abs/2003.05385) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/hp_vpinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [laaf](https://doi.org/10.1016/j.jcp.2019.109136) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/laaf/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [mgnet](https://link.springer.com/article/10.1007/s11425-019-9547-2) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/mgnet/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [multiscale_pinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782521002759) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/multiscale_pinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [pfnn](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308597) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pfnn/README_CN.md#脚本说明) | | ✅ | -| 通用物理 | [phygeonet](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308536) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/phygeonet/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [pi_deeponet](https://www.sciencedirect.com/science/article/abs/pii/S0021999122009184) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pi_deeponet/README_CN.md#脚本参数) | | ✅ | -| 通用物理 | [pinns](https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns/README_CN.md#脚本参数) | | ✅ | -| 通用物理 | [pinns_ntk](https://www.sciencedirect.com/science/article/pii/S002199912100663X) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns_ntk/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [ppinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520304357) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/ppinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 通用物理 | [xpinns](https://doi.org/10.4208/cicp.OA-2020-0164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/xpinns/README_CN.md#脚本参数) | ✅ | ✅ | -| 哈密顿系统 | [sympnets](https://www.sciencedirect.com/science/article/pii/S0893608020303063) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/sympnets/README_CN.md#脚本参数) | ✅ | ✅ | -| 流体力学 | [hfm](https://www.science.org/doi/abs/10.1126/science.aaw4741) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/hfm/README_CN.md#脚本参数) | ✅ | ✅ | -| 流体力学 | [label_free_dnn_surrogate](https://www.sciencedirect.com/science/article/pii/S004578251930622X) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/label_free_dnn_surrogate/README_CN.md#脚本参数) | ✅ | ✅ | -| 流体力学 | [nsf_nets](https://www.sciencedirect.com/science/article/pii/S0021999120307257) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/nsf_nets/README_CN.md#脚本参数) | ✅ | ✅ | -| 流体力学 | [*burgers_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/FNO1D_CN.ipynb) | ✅ | ✅ | -| 流体力学 | [*burgers_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/KNO1D_CN.ipynb) | ✅ | ✅ | -| 流体力学 | [*navier_stokes_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/FNO2D_CN.ipynb) | ✅ | ✅ | -| 流体力学 | [*navier_stokes_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/KNO2D_CN.ipynb) | ✅ | ✅ | -| 流体力学 | [*navier_stokes_3d_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno3d/FNO3D_CN.ipynb) | ✅ | ✅ | -| 流体力学 | [*pde_net](https://arxiv.org/abs/1710.09668) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/README_CN.md) | ✅ | ✅ | -| 流体力学 | [*percnn](https://www.nature.com/articles/s42256-023-00685-7) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/percnn/README_CN.md) | ✅ | ✅ | -| 弹性动力学 | [pinn_elastodynamics](https://arxiv.org/abs/2006.08472) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_elastodynamics/README_CN.md#脚本参数) | ✅ | ✅ | -| 热力学 | [pinn_heattransfer](https://arxiv.org/abs/1711.10561) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_heattransfer/README_CN.md#脚本参数) | ✅ | ✅ | -| 气象学 | [enso](https://doi.org/10.1038/s41586-019-1559-7) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/enso/README_CN.md#脚本参数) | ✅ | ✅ | -| 地质学 | [inversion_net](https://ieeexplore.ieee.org/abstract/document/8918045/) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/inversion_net/README_CN.md#脚本参数) | ✅ | ✅ | -| 地质学 | [pinn_helmholtz](https://academic.oup.com/gji/article-abstract/228/3/1750/6409132) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinn_helmholtz/README_CN.md#脚本参数) | ✅ | ✅ | -| 海洋物理 | [ocean_model](https://gmd.copernicus.org/articles/12/4729/2019/) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/ocean_model/README_CN.md#模型说明) | | ✅ | -| 海洋物理 | [pinns_swe](https://arxiv.org/abs/2104.00615) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/pinns_swe/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [maxwell_net](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/SciAI/sciai/model/maxwell_net/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*AD_FDTD_invert_f](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README_CN.md#脚本参数) | | ✅ | -| 电磁学 | [*AD_FDTD_microstrip_filter](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README_CN.md#脚本参数) | | ✅ | -| 电磁学 | [*AD_FDTD_inverse](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_inverse/README_CN.md#脚本参数) | | ✅ | -| 电磁学 | [*frequency_domain_maxwell](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*frequency_domain_maxwell_3D_dielectric_slab](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/dielectric_slab_3d/README.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*frequency_domain_maxwell_3D_waveguide_cavity](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/waveguide_cavity_3d/README.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*meta_auto_decoder](https://arxiv.org/abs/2111.08823) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/incremental_learning/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*pinn_fwi](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB023120) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/pinn_fwi/README.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*SED_ANN](https://atomgit.com/mindspore-lab/mindscience/tree/master/MindElec/examples/data_driven/sed_ann) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/data_driven/sed_ann/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*time_domain_maxwell](https://www.ijcai.org/proceedings/2022/533) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/physics_driven/time_domain_maxwell/README_CN.md#脚本参数) | ✅ | ✅ | -| 电磁学 | [*metasurface_holograms](https://www.researching.cn/articles/OJ44d3746c3db8c1e1) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindElec/examples/metasurface/metasurface_holograms/README_CN.md#脚本参数) | ✅ | ✅ | -| 生物 | [*MEGA-Fold](https://arxiv.org/abs/2206.12240v1) | [link (推理)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (训练)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| 生物 | [*MEGA-EvoGen](https://arxiv.org/abs/2208.09652) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| 生物 | [*MEGA-Assessment](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | [link (推理)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (训练)](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | -| 生物 | [*ColabDesign](https://www.biorxiv.org/content/10.1101/2021.11.10.468128.abstract) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ColabDesign.md) | ✅ | ✅ | -| 生物 | [*DeepFRI](https://www.nature.com/articles/s41467-021-23303-9) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/DeepFri.md) | ✅ | ✅ | -| 生物 | [*Multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | ✅ | ✅ | -| 生物 | [*ProteinMPNN](https://www.science.org/doi/abs/10.1126/science.add2187) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | ✅ | ✅ | -| 生物 | [*UFold](https://doi.org/10.1093/nar/gkab1074) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | ✅ | ✅ | -| 生物 | [*esm-if1](https://proceedings.mlr.press/v162/hsu22a.html) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | ✅ | ✅ | -| 生物 | [*esm2](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-2.md) | ✅ | ✅ | -| 生物 | [*grover](https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf) | [link](https://atomgit.com/mindspore-lab/mindscience/blob/master/MindSPONGE/applications/model_cards/GROVER.MD) | ✅ | ✅ | +| 通用物理 | [auq_pinns](https://www.sciencedirect.com/science/article/pii/S0021999119303584) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/auq_pinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [cpinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520302127) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/cpinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [deep_hpms](https://www.jmlr.org/papers/volume19/18-046/18-046.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deep_hpms/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [deep_ritz](https://arxiv.org/abs/1710.00211) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deep_ritz/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [deepbsde](https://www.pnas.org/doi/10.1073/pnas.1718942115) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deepbsde/README.md#script-parameters) | | ✅ | +| 通用物理 | [deeponet](https://www.nature.com/articles/s42256-021-00302-5) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/deeponet/README_CN.md#脚本参数) | | ✅ | +| 通用物理 | [dgm](https://arxiv.org/abs/1708.07469) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/dgm/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [fbsnns](https://arxiv.org/abs/1804.07010) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/fbsnns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [fpinns](https://arxiv.org/abs/1811.08967) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/fpinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [gradient_pathologies_pinns](https://arxiv.org/abs/2001.04536) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/gradient_pathologies_pinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [hp_vpinns](https://arxiv.org/abs/2003.05385) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/hp_vpinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [laaf](https://doi.org/10.1016/j.jcp.2019.109136) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/laaf/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [mgnet](https://link.springer.com/article/10.1007/s11425-019-9547-2) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/mgnet/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [multiscale_pinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782521002759) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/multiscale_pinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [pfnn](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308597) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pfnn/README_CN.md#脚本说明) | | ✅ | +| 通用物理 | [phygeonet](https://www.sciencedirect.com/science/article/abs/pii/S0021999120308536) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/phygeonet/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [pi_deeponet](https://www.sciencedirect.com/science/article/abs/pii/S0021999122009184) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pi_deeponet/README_CN.md#脚本参数) | | ✅ | +| 通用物理 | [pinns](https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns/README_CN.md#脚本参数) | | ✅ | +| 通用物理 | [pinns_ntk](https://www.sciencedirect.com/science/article/pii/S002199912100663X) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns_ntk/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [ppinns](https://www.sciencedirect.com/science/article/abs/pii/S0045782520304357) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/ppinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 通用物理 | [xpinns](https://doi.org/10.4208/cicp.OA-2020-0164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/xpinns/README_CN.md#脚本参数) | ✅ | ✅ | +| 哈密顿系统 | [sympnets](https://www.sciencedirect.com/science/article/pii/S0893608020303063) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/sympnets/README_CN.md#脚本参数) | ✅ | ✅ | +| 流体力学 | [hfm](https://www.science.org/doi/abs/10.1126/science.aaw4741) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/hfm/README_CN.md#脚本参数) | ✅ | ✅ | +| 流体力学 | [label_free_dnn_surrogate](https://www.sciencedirect.com/science/article/pii/S004578251930622X) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/label_free_dnn_surrogate/README_CN.md#脚本参数) | ✅ | ✅ | +| 流体力学 | [nsf_nets](https://www.sciencedirect.com/science/article/pii/S0021999120307257) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/nsf_nets/README_CN.md#脚本参数) | ✅ | ✅ | +| 流体力学 | [*burgers_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/fno1d/FNO1D_CN.ipynb) | ✅ | ✅ | +| 流体力学 | [*burgers_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/burgers/kno1d/KNO1D_CN.ipynb) | ✅ | ✅ | +| 流体力学 | [*navier_stokes_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno2d/FNO2D_CN.ipynb) | ✅ | ✅ | +| 流体力学 | [*navier_stokes_kno](https://arxiv.org/abs/2301.10022) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/kno2d/KNO2D_CN.ipynb) | ✅ | ✅ | +| 流体力学 | [*navier_stokes_3d_fno](https://arxiv.org/abs/2010.08895) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_driven/navier_stokes/fno3d/FNO3D_CN.ipynb) | ✅ | ✅ | +| 流体力学 | [*pde_net](https://arxiv.org/abs/1710.09668) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/pde_net/README_CN.md) | ✅ | ✅ | +| 流体力学 | [*percnn](https://www.nature.com/articles/s42256-023-00685-7) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindFlow/applications/data_mechanism_fusion/percnn/README_CN.md) | ✅ | ✅ | +| 弹性动力学 | [pinn_elastodynamics](https://arxiv.org/abs/2006.08472) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_elastodynamics/README_CN.md#脚本参数) | ✅ | ✅ | +| 热力学 | [pinn_heattransfer](https://arxiv.org/abs/1711.10561) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_heattransfer/README_CN.md#脚本参数) | ✅ | ✅ | +| 气象学 | [enso](https://doi.org/10.1038/s41586-019-1559-7) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/enso/README_CN.md#脚本参数) | ✅ | ✅ | +| 地质学 | [inversion_net](https://ieeexplore.ieee.org/abstract/document/8918045/) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/inversion_net/README_CN.md#脚本参数) | ✅ | ✅ | +| 地质学 | [pinn_helmholtz](https://academic.oup.com/gji/article-abstract/228/3/1750/6409132) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinn_helmholtz/README_CN.md#脚本参数) | ✅ | ✅ | +| 海洋物理 | [ocean_model](https://gmd.copernicus.org/articles/12/4729/2019/) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/ocean_model/README_CN.md#模型说明) | | ✅ | +| 海洋物理 | [pinns_swe](https://arxiv.org/abs/2104.00615) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/pinns_swe/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [maxwell_net](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/SciAI/sciai/model/maxwell_net/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*AD_FDTD_invert_f](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README_CN.md#脚本参数) | | ✅ | +| 电磁学 | [*AD_FDTD_microstrip_filter](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_forward/README_CN.md#脚本参数) | | ✅ | +| 电磁学 | [*AD_FDTD_inverse](https://www.mindspore.cn/mindelec/docs/zh-CN/r0.2/AD_FDTD.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/AD_FDTD/fdtd_inverse/README_CN.md#脚本参数) | | ✅ | +| 电磁学 | [*frequency_domain_maxwell](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*frequency_domain_maxwell_3D_dielectric_slab](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/dielectric_slab_3d/README.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*frequency_domain_maxwell_3D_waveguide_cavity](https://arxiv.org/abs/2107.06164) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/frequency_domain_maxwell_3D/waveguide_cavity_3d/README.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*meta_auto_decoder](https://arxiv.org/abs/2111.08823) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/incremental_learning/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*pinn_fwi](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JB023120) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/pinn_fwi/README.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*SED_ANN](https://atomgit.com/mindspore/mindscience/tree/master/MindElec/examples/data_driven/sed_ann) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/data_driven/sed_ann/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*time_domain_maxwell](https://www.ijcai.org/proceedings/2022/533) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/physics_driven/time_domain_maxwell/README_CN.md#脚本参数) | ✅ | ✅ | +| 电磁学 | [*metasurface_holograms](https://www.researching.cn/articles/OJ44d3746c3db8c1e1) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindElec/examples/metasurface/metasurface_holograms/README_CN.md#脚本参数) | ✅ | ✅ | +| 生物 | [*MEGA-Fold](https://arxiv.org/abs/2206.12240v1) | [link (推理)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (训练)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| 生物 | [*MEGA-EvoGen](https://arxiv.org/abs/2208.09652) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| 生物 | [*MEGA-Assessment](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | [link (推理)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) [link (训练)](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/MEGAProtein.md) | ✅ | ✅ | +| 生物 | [*ColabDesign](https://www.biorxiv.org/content/10.1101/2021.11.10.468128.abstract) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ColabDesign.md) | ✅ | ✅ | +| 生物 | [*DeepFRI](https://www.nature.com/articles/s41467-021-23303-9) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/DeepFri.md) | ✅ | ✅ | +| 生物 | [*Multimer](https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/afmultimer.md) | ✅ | ✅ | +| 生物 | [*ProteinMPNN](https://www.science.org/doi/abs/10.1126/science.add2187) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ProteinMPNN.MD) | ✅ | ✅ | +| 生物 | [*UFold](https://doi.org/10.1093/nar/gkab1074) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/UFold.md) | ✅ | ✅ | +| 生物 | [*esm-if1](https://proceedings.mlr.press/v162/hsu22a.html) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-IF1.md) | ✅ | ✅ | +| 生物 | [*esm2](https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.full.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/ESM-2.md) | ✅ | ✅ | +| 生物 | [*grover](https://proceedings.neurips.cc/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf) | [link](https://atomgit.com/mindspore/mindscience/blob/master/MindSPONGE/applications/model_cards/GROVER.MD) | ✅ | ✅ | 注: 带有“*”的网络模型为MindSpore与MindScience先前已发布网络。 \ No newline at end of file -- Gitee