diff --git a/docs/note/source_en/model_lite.rst b/docs/note/source_en/model_lite.rst index bb6b04ac6fed42dbe42d78fe55d329edd5e5d0b8..2fa38b248c3a167289094cfe865936cef089d0e6 100644 --- a/docs/note/source_en/model_lite.rst +++ b/docs/note/source_en/model_lite.rst @@ -8,4 +8,5 @@ object_detection_lite posenet_lite image_segmentation_lite - style_transfer_lite \ No newline at end of file + style_transfer_lite + scene_detection_lite \ No newline at end of file diff --git a/docs/note/source_en/object_detection_lite.md b/docs/note/source_en/object_detection_lite.md index 4d571b5955c3c6a8d0abd050602c715590b17ec0..a0c07e24a717322c025f91eb42be30e57511a6b1 100644 --- a/docs/note/source_en/object_detection_lite.md +++ b/docs/note/source_en/object_detection_lite.md @@ -20,7 +20,7 @@ The following table shows the data of some object detection models using MindSpo > The performance of the table below is tested on the mate30. -| Model name | Size | mAP(IoU=0.50:0.95) | CPU 4 thread delay (ms) | +| Model name | Size(Mb) | mAP(IoU=0.50:0.95) | CPU 4 thread delay (ms) | |-----------------------| :----------: | :----------: | :-----------: | | [MobileNetv2-SSD](https://download.mindspore.cn/model_zoo/official/lite/ssd_mobilenetv2_lite/ssd.ms) | 16.7 | 0.22 | 25.4 | | [GhostNet-SSD](https://download.mindspore.cn/model_zoo/official/lite/ssd_ghostnet_lite/ssd.ms) | 25.7 | 0.24 | 24.1 | diff --git a/docs/note/source_en/scene_detection_lite.md b/docs/note/source_en/scene_detection_lite.md new file mode 100644 index 0000000000000000000000000000000000000000..0bd910475c637ea7b6380ce984670df44eb56aeb --- /dev/null +++ b/docs/note/source_en/scene_detection_lite.md @@ -0,0 +1,19 @@ +# Scene Detection Model Support (Lite) + + + +## Scene dectectin introduction + +Scene detection can identify the type of scene in the device's camera. + +Using MindSpore Lite to implement scene detection [example](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/lite/scene_detection). + +## Scene detection model list + +The following table shows the data of some scene detection models using MindSpore Lite inference. + +> The performance of the table below is tested on the P30. + +| Model name | Size(Mb) | Top1 | CPU 4 thread delay (ms) | +|-----------------------| :----------: | :----------: | :-----------: | +| [MobileNetv2](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms) | 11.3 | - | 11.5 | diff --git a/docs/note/source_zh_cn/model_lite.rst b/docs/note/source_zh_cn/model_lite.rst index 3a0b8a844a89202f825062eb769e7a026da2663a..f2be842d93debe0d5174bfd3498f953c8d2f0904 100644 --- a/docs/note/source_zh_cn/model_lite.rst +++ b/docs/note/source_zh_cn/model_lite.rst @@ -8,4 +8,5 @@ object_detection_lite posenet_lite image_segmentation_lite - style_transfer_lite \ No newline at end of file + style_transfer_lite + scene_detection_lite \ No newline at end of file diff --git a/docs/note/source_zh_cn/object_detection_lite.md b/docs/note/source_zh_cn/object_detection_lite.md index a39c84593fdde248d44326b71e9b0d894938ba78..df8116ba720dfead4d51136bda50a4dd9236134a 100644 --- a/docs/note/source_zh_cn/object_detection_lite.md +++ b/docs/note/source_zh_cn/object_detection_lite.md @@ -20,7 +20,7 @@ > 下表的性能是在mate30手机上测试的。 -| 模型名称 | 大小 | mAP(IoU=0.50:0.95) | CPU 4线程时延(ms) | +| 模型名称 | 大小(Mb) | mAP(IoU=0.50:0.95) | CPU 4线程时延(ms) | |-----------------------| :----------: | :----------: | :-----------: | | [MobileNetv2-SSD](https://download.mindspore.cn/model_zoo/official/lite/ssd_mobilenetv2_lite/ssd.ms) | 16.7 | 0.22 | 25.4 | | [GhostNet-SSD](https://download.mindspore.cn/model_zoo/official/lite/ssd_ghostnet_lite/ssd.ms) | 25.7 | 0.24 | 24.1 | diff --git a/docs/note/source_zh_cn/scene_detection_lite.md b/docs/note/source_zh_cn/scene_detection_lite.md new file mode 100644 index 0000000000000000000000000000000000000000..19b3d7db410944cf9a4d1e14e10ed4a5c828cf76 --- /dev/null +++ b/docs/note/source_zh_cn/scene_detection_lite.md @@ -0,0 +1,19 @@ +# 场景检测模型支持(Lite) + + + +## 场景检测介绍 + +场景检测可以识别设备摄像头中场景的类型。 + +使用MindSpore Lite实现场景检测的[示例代码](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/lite/scene_detection)。 + +## 场景检测模型列表 + +下表是使用MindSpore Lite推理的部分场景检测模型的数据。 + +> 下表的性能是在P30手机上测试的。 + +| 模型名称 | 大小(Mb) | Top1 | CPU 4线程时延(ms) | +|-----------------------| :----------: | :----------: | :-----------: | +| [MobileNetv2](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms) | 11.3 | - | 11.5 |