diff --git a/tutorials/training/source_en/advanced_use/performance_profiling.md b/tutorials/training/source_en/advanced_use/performance_profiling.md index 4d9242608d6f1c2a876c704eb46d29ff9c70b818..4fbc78b8f8bf7417cb942273e35e5b2295bd55db 100644 --- a/tutorials/training/source_en/advanced_use/performance_profiling.md +++ b/tutorials/training/source_en/advanced_use/performance_profiling.md @@ -44,30 +44,19 @@ The sample code is as follows: from mindspore.profiler import Profiler from mindspore import Model, nn, context +# Init context env +context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=int(os.environ["DEVICE_ID"])) -def test_profiler(): - # Init context env - context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=int(os.environ["DEVICE_ID"])) - - # Init Profiler - # Note that 'data' directory is created in current path by default. To visualize the profiling data by MindInsight, - # 'data' directory should be placed under summary-base-dir. - profiler = Profiler() - - # Init hyperparameter - epoch = 2 - # Init network and Model - net = Net() - loss_fn = CrossEntropyLoss() - optim = MyOptimizer(learning_rate=0.01, params=network.trainable_params()) - model = Model(net, loss_fn=loss_fn, optimizer=optim, metrics=None) - # Prepare mindrecord_dataset for training - train_ds = create_mindrecord_dataset_for_training() - # Model Train - model.train(epoch, train_ds) - - # Profiler end - profiler.analyse() +# Init Profiler +# Note that 'data' directory is created in current path by default. To visualize the profiling data by MindInsight, +# 'data' directory should be placed under summary-base-dir. +profiler = Profiler() + +# Model Train +Model.train() + +# Profiler end +profiler.analyse() ``` ## Launch MindInsight diff --git a/tutorials/training/source_zh_cn/advanced_use/performance_profiling.md b/tutorials/training/source_zh_cn/advanced_use/performance_profiling.md index 3a53f103ad98b2f70529dcfc6a28d464c866c19a..fec0808fabb5b9fbe3acf4f9f98ce7ea1f40bd37 100644 --- a/tutorials/training/source_zh_cn/advanced_use/performance_profiling.md +++ b/tutorials/training/source_zh_cn/advanced_use/performance_profiling.md @@ -48,30 +48,19 @@ from mindspore.profiler import Profiler from mindspore import Model, nn, context +# Init context env +context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=int(os.environ["DEVICE_ID"])) -def test_profiler(): - # Init context env - context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', device_id=int(os.environ["DEVICE_ID"])) - - # Init Profiler - # Note that 'data' directory is created in current path by default. To visualize the profiling data by MindInsight, - # 'data' directory should be placed under summary-base-dir. - profiler = Profiler() - - # Init hyperparameter - epoch = 2 - # Init network and Model - net = Net() - loss_fn = CrossEntropyLoss() - optim = MyOptimizer(learning_rate=0.01, params=network.trainable_params()) - model = Model(net, loss_fn=loss_fn, optimizer=optim, metrics=None) - # Prepare mindrecord_dataset for training - train_ds = create_mindrecord_dataset_for_training() - # Model Train - model.train(epoch, train_ds) - - # Profiler end - profiler.analyse() +# Init Profiler +# Note that 'data' directory is created in current path by default. To visualize the profiling data by MindInsight, +# 'data' directory should be placed under summary-base-dir. +profiler = Profiler() + +# Model Train +Model.train() + +# Profiler end +profiler.analyse() ``` ## 启动MindInsight