diff --git a/tutorials/source_en/advanced_use/on_device_inference.md b/tutorials/source_en/advanced_use/on_device_inference.md index 210fd4985a0e11612c591dd507fa55bb8496eaf4..b95bfd1bf0266f2df2b600dbd827bc07d15b8236 100644 --- a/tutorials/source_en/advanced_use/on_device_inference.md +++ b/tutorials/source_en/advanced_use/on_device_inference.md @@ -87,7 +87,7 @@ To perform on-device model inference using MindSpore, perform the following step ### Generating an On-Device Model File 1. After training is complete, load the generated checkpoint file to the defined network. ```python - param_dict = load_checkpoint(ckpoint_file_name=ckpt_file_path) + param_dict = load_checkpoint(ckpt_file_name=ckpt_file_path) load_param_into_net(net, param_dict) ``` 2. Call the `export` API to export the .ms model file on the device. @@ -145,7 +145,7 @@ if __name__ == '__main__': is_ckpt_exist = os.path.exists(ckpt_file_path) if is_ckpt_exist: - param_dict = load_checkpoint(ckpoint_file_name=ckpt_file_path) + param_dict = load_checkpoint(ckpt_file_name=ckpt_file_path) load_param_into_net(net, param_dict) export(net, input_data, file_name="./lenet.ms", file_format='LITE') print("export model success.") diff --git a/tutorials/source_zh_cn/advanced_use/on_device_inference.md b/tutorials/source_zh_cn/advanced_use/on_device_inference.md index 17be02578ea5ecdeadb445ff0cc0f7bc628a4e37..fb9a6a08fafb88cf744b6fcecf0ef74c43292f76 100644 --- a/tutorials/source_zh_cn/advanced_use/on_device_inference.md +++ b/tutorials/source_zh_cn/advanced_use/on_device_inference.md @@ -86,7 +86,7 @@ MindSpore进行端侧模型推理的步骤如下。 ### 生成端侧模型文件 1. 加载训练完毕所生成的CheckPoint文件至定义好的网络中。 ```python - param_dict = load_checkpoint(ckpoint_file_name=ckpt_file_path) + param_dict = load_checkpoint(ckpt_file_name=ckpt_file_path) load_param_into_net(net, param_dict) ``` 2. 调用`export`接口,导出端侧模型文件(.ms)。 @@ -144,7 +144,7 @@ if __name__ == '__main__': is_ckpt_exist = os.path.exists(ckpt_file_path) if is_ckpt_exist: - param_dict = load_checkpoint(ckpoint_file_name=ckpt_file_path) + param_dict = load_checkpoint(ckpt_file_name=ckpt_file_path) load_param_into_net(net, param_dict) export(net, input_data, file_name="./lenet.ms", file_format='LITE') print("export model success.")