diff --git a/docs/source_en/network_list.md b/docs/source_en/network_list.md
index bc4cd2d0702529fd9dbad0831a122c8212b74c88..b80bbad079ba8b105e36d6e503fde6d507be35eb 100644
--- a/docs/source_en/network_list.md
+++ b/docs/source_en/network_list.md
@@ -9,8 +9,8 @@
|Computer Version (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Version (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Version (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
-| Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Supported | Doing
-|Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
+| Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
+|Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
diff --git a/docs/source_zh_cn/network_list.md b/docs/source_zh_cn/network_list.md
index a281570b9c29a805eda3960ed9176b7b9d5aa69c..ca81d46314a035ee7cbd1d09c76c72ecf001ec81 100644
--- a/docs/source_zh_cn/network_list.md
+++ b/docs/source_zh_cn/network_list.md
@@ -9,8 +9,8 @@
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
-| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Supported | Doing
-|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
+| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
+|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
diff --git a/tutorials/source_en/advanced_use/computer_vision_application.md b/tutorials/source_en/advanced_use/computer_vision_application.md
index 4da8db42e70ca632bafbe01ccd88235c760ba2a6..c51b3db4a2f9ef739aa32bef7bdd653c6c7a9626 100644
--- a/tutorials/source_en/advanced_use/computer_vision_application.md
+++ b/tutorials/source_en/advanced_use/computer_vision_application.md
@@ -143,7 +143,7 @@ CNN is a standard algorithm for image classification tasks. CNN uses a layered s
ResNet is recommended. First, it is deep enough with 34 layers, 50 layers, or 101 layers. The deeper the hierarchy, the stronger the representation capability, and the higher the classification accuracy. Second, it is learnable. The residual structure is used. The lower layer is directly connected to the upper layer through the shortcut connection, which solves the problem of gradient disappearance caused by the network depth during the reverse propagation. In addition, the ResNet network has good performance, including the recognition accuracy, model size, and parameter quantity.
-MindSpore Model Zoo has a ResNet [model](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py). The calling method is as follows:
+MindSpore Model Zoo has a ResNet [model](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py). The calling method is as follows:
```python
network = resnet50(class_num=10)
diff --git a/tutorials/source_en/advanced_use/network_migration.md b/tutorials/source_en/advanced_use/network_migration.md
index 9f396fe5480fbc544b0baf578da8103cb0385450..b6e49d57b80fc12bf84080e90bf0670e1b98240d 100644
--- a/tutorials/source_en/advanced_use/network_migration.md
+++ b/tutorials/source_en/advanced_use/network_migration.md
@@ -79,7 +79,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
num_shards=device_num, shard_id=rank_id)
```
- Then, perform data augmentation, data cleaning, and batch processing. For details about the code, see .
+ Then, perform data augmentation, data cleaning, and batch processing. For details about the code, see .
3. Build a network.
@@ -214,7 +214,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
6. Build the entire network.
- The [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) network structure is formed by connecting multiple defined subnets. Follow the rule of defining subnets before using them and define all the subnets used in the `__init__` and connect subnets in the `construct`.
+ The [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) network structure is formed by connecting multiple defined subnets. Follow the rule of defining subnets before using them and define all the subnets used in the `__init__` and connect subnets in the `construct`.
7. Define a loss function and an optimizer.
diff --git a/tutorials/source_zh_cn/advanced_use/computer_vision_application.md b/tutorials/source_zh_cn/advanced_use/computer_vision_application.md
index 41a1e2613b519c807271765ba0249815c3f04baa..5b0d066e6a6e91c32645fa681d7a8496f422c143 100644
--- a/tutorials/source_zh_cn/advanced_use/computer_vision_application.md
+++ b/tutorials/source_zh_cn/advanced_use/computer_vision_application.md
@@ -145,7 +145,7 @@ tar -zvxf cifar-10-binary.tar.gz
ResNet通常是较好的选择。首先,它足够深,常见的有34层,50层,101层。通常层次越深,表征能力越强,分类准确率越高。其次,可学习,采用了残差结构,通过shortcut连接把低层直接跟高层相连,解决了反向传播过程中因为网络太深造成的梯度消失问题。此外,ResNet网络的性能很好,既表现为识别的准确率,也包括它本身模型的大小和参数量。
-MindSpore Model Zoo中已经实现了ResNet模型,可以采用[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py)。调用方法如下:
+MindSpore Model Zoo中已经实现了ResNet模型,可以采用[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py)。调用方法如下:
```python
network = resnet50(class_num=10)
diff --git a/tutorials/source_zh_cn/advanced_use/network_migration.md b/tutorials/source_zh_cn/advanced_use/network_migration.md
index 8d3f574dbe4a90fec2c34772db6d2cdd12426fba..ec5d1b7da8f596e628b769ece2545d0bd7f9cec6 100644
--- a/tutorials/source_zh_cn/advanced_use/network_migration.md
+++ b/tutorials/source_zh_cn/advanced_use/network_migration.md
@@ -77,7 +77,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
num_shards=device_num, shard_id=rank_id)
```
- 然后对数据进行了数据增强、数据清洗和批处理等操作。代码详见。
+ 然后对数据进行了数据增强、数据清洗和批处理等操作。代码详见。
3. 构建网络。
@@ -210,7 +210,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
6. 构造整网。
- 将定义好的多个子网连接起来就是整个[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py)网络的结构了。同样遵循先定义后使用的原则,在`__init__`中定义所有用到的子网,在`construct`中连接子网。
+ 将定义好的多个子网连接起来就是整个[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py)网络的结构了。同样遵循先定义后使用的原则,在`__init__`中定义所有用到的子网,在`construct`中连接子网。
7. 定义损失函数和优化器。
@@ -269,4 +269,4 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
1. [常用数据集读取样例](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html)
-2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
\ No newline at end of file
+2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)