From 9c8bc3b2e9bfa94e955503176483b9cb1e5196da Mon Sep 17 00:00:00 2001 From: CaoJian Date: Wed, 22 Jul 2020 10:12:39 +0800 Subject: [PATCH] modify the vgg16/lstm path to offical/{cv/npl} --- docs/source_en/network_list.md | 4 ++-- docs/source_zh_cn/network_list.md | 4 ++-- tutorials/source_en/advanced_use/nlp_application.md | 8 ++++---- tutorials/source_zh_cn/advanced_use/nlp_application.md | 8 ++++---- 4 files changed, 12 insertions(+), 12 deletions(-) diff --git a/docs/source_en/network_list.md b/docs/source_en/network_list.md index bbdb2aeb7a..e03caa9e9e 100644 --- a/docs/source_en/network_list.md +++ b/docs/source_en/network_list.md @@ -11,7 +11,7 @@ | Computer Version (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported | Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Supported | Doing |Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing -| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing +| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing | Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing | Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing |Computer Version (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing @@ -20,7 +20,7 @@ | Computer Version (CV) | Semantic Segmentation | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing | Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing | Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing -| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported +| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported | Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing | Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing | Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/gcn/src/gcn.py) | Supported | Doing | Doing diff --git a/docs/source_zh_cn/network_list.md b/docs/source_zh_cn/network_list.md index c6fbeff906..b9f141ce9b 100644 --- a/docs/source_zh_cn/network_list.md +++ b/docs/source_zh_cn/network_list.md @@ -11,7 +11,7 @@ | 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported | 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Supported | Doing |计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing -| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing +| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing | 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing | 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing |计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing @@ -20,7 +20,7 @@ | 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing | 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing -| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported +| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported | 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing | 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing | 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/gcn/src/gcn.py) | Supported | Doing | Doing diff --git a/tutorials/source_en/advanced_use/nlp_application.md b/tutorials/source_en/advanced_use/nlp_application.md index 02cdea4c2c..66ac6d3063 100644 --- a/tutorials/source_en/advanced_use/nlp_application.md +++ b/tutorials/source_en/advanced_use/nlp_application.md @@ -86,7 +86,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation. 3. After the model is obtained, use the validation dataset to check the accuracy of model. -> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at: +> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at: > - `src/config.py`:some configurations on the network, including the batch size and number of training epochs. > - `src/dataset.py`:dataset related definition,include MindRecord file convert and data-preprocess, etc. > - `src/imdb.py`: the util class for parsing IMDB dataset. @@ -156,7 +156,7 @@ if args.preprocess == "true": ``` > After convert success, we can file `mindrecord` files under the directory `preprocess_path`. Usually, this operation does not need to be performed every time while the data set is unchanged. -> `convert_to_mindrecord` You can find the complete definition at: +> `convert_to_mindrecord` You can find the complete definition at: > It consists of two steps: >1. Process the text dataset, including encoding, word segmentation, alignment, and processing the original GloVe data to adapt to the network structure. @@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0], weight=Tensor(embedding_table), batch_size=cfg.batch_size) ``` -> `SentimentNet` You can find the complete definition at: +> `SentimentNet` You can find the complete definition at: ### Pre-Training @@ -215,7 +215,7 @@ else: model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb]) print("============== Training Success ==============") ``` -> `lstm_create_dataset` You can find the complete definition at: +> `lstm_create_dataset` You can find the complete definition at: ### Validating the Model diff --git a/tutorials/source_zh_cn/advanced_use/nlp_application.md b/tutorials/source_zh_cn/advanced_use/nlp_application.md index 69c99787f9..0dadf7fcf8 100644 --- a/tutorials/source_zh_cn/advanced_use/nlp_application.md +++ b/tutorials/source_zh_cn/advanced_use/nlp_application.md @@ -87,7 +87,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$ > LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。 3. 得到模型之后,使用验证数据集,查看模型精度情况。 -> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码: +> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码: > - `src/config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。 > - `src/dataset.py`:数据集相关,包括转换成MindRecord文件,数据预处理等。 > - `src/imdb.py`: 解析IMDB数据集的工具。 @@ -156,7 +156,7 @@ if args.preprocess == "true": ``` > 转换成功后会在`preprocess_path`路径下生成`mindrecord`文件; 通常该操作在数据集不变的情况下,无需每次训练都执行。 -> `convert_to_mindrecord`函数的具体实现请参考 +> `convert_to_mindrecord`函数的具体实现请参考 > 其中包含两大步骤: > 1. 解析文本数据集,包括编码、分词、对齐、处理GloVe原始数据,使之能够适应网络结构。 @@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0], weight=Tensor(embedding_table), batch_size=cfg.batch_size) ``` -> `SentimentNet`网络结构的具体实现请参考 +> `SentimentNet`网络结构的具体实现请参考 ### 预训练模型 @@ -215,7 +215,7 @@ else: model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb]) print("============== Training Success ==============") ``` -> `lstm_create_dataset`函数的具体实现请参考 +> `lstm_create_dataset`函数的具体实现请参考 ### 模型验证 -- Gitee