diff --git a/docs/source_en/network_list.md b/docs/source_en/network_list.md
index 3360fc6b2c9436aa68978761b21258ada580c5ff..774bcafadb358a44c4471fad231845e9f8f54100 100644
--- a/docs/source_en/network_list.md
+++ b/docs/source_en/network_list.md
@@ -12,7 +12,7 @@
| Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Version (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
-| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
+| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Version (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Version (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
@@ -21,7 +21,7 @@
| Computer Version (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
-| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
+| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
diff --git a/docs/source_zh_cn/network_list.md b/docs/source_zh_cn/network_list.md
index 8c45050e716fdeb4d1ad5fb87b0acc9e9c178737..1c0b15c44ddbb81dee062e33a4bf1db76743d841 100644
--- a/docs/source_zh_cn/network_list.md
+++ b/docs/source_zh_cn/network_list.md
@@ -12,7 +12,7 @@
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
-| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
+| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
@@ -21,7 +21,7 @@
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
-| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
+| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
diff --git a/tutorials/source_en/advanced_use/nlp_application.md b/tutorials/source_en/advanced_use/nlp_application.md
index bc531f49635c78ad50092691f1657f9ffeb50c8a..4e56d1116a3ffb33aadd2dd61658e4825cdac440 100644
--- a/tutorials/source_en/advanced_use/nlp_application.md
+++ b/tutorials/source_en/advanced_use/nlp_application.md
@@ -86,7 +86,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation.
3. After the model is obtained, use the validation dataset to check the accuracy of model.
-> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:
+> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:
> - `src/config.py`:some configurations on the network, including the batch size and number of training epochs.
> - `src/dataset.py`:dataset related definition,include MindRecord file convert and data-preprocess, etc.
> - `src/imdb.py`: the util class for parsing IMDB dataset.
@@ -156,7 +156,7 @@ if args.preprocess == "true":
```
> After convert success, we can file `mindrecord` files under the directory `preprocess_path`. Usually, this operation does not need to be performed every time while the data set is unchanged.
-> `convert_to_mindrecord` You can find the complete definition at:
+> `convert_to_mindrecord` You can find the complete definition at:
> It consists of two steps:
>1. Process the text dataset, including encoding, word segmentation, alignment, and processing the original GloVe data to adapt to the network structure.
@@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0],
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
```
-> `SentimentNet` You can find the complete definition at:
+> `SentimentNet` You can find the complete definition at:
### Pre-Training
@@ -215,7 +215,7 @@ else:
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("============== Training Success ==============")
```
-> `lstm_create_dataset` You can find the complete definition at:
+> `lstm_create_dataset` You can find the complete definition at:
### Validating the Model
diff --git a/tutorials/source_zh_cn/advanced_use/nlp_application.md b/tutorials/source_zh_cn/advanced_use/nlp_application.md
index 540f4e19096fcf08db98f43541b397cb5cc6bf7f..7e1b05b9d3b1bbda6d013d56fa15aba23621431e 100644
--- a/tutorials/source_zh_cn/advanced_use/nlp_application.md
+++ b/tutorials/source_zh_cn/advanced_use/nlp_application.md
@@ -87,7 +87,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$
> LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。
3. 得到模型之后,使用验证数据集,查看模型精度情况。
-> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:
+> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:
> - `src/config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。
> - `src/dataset.py`:数据集相关,包括转换成MindRecord文件,数据预处理等。
> - `src/imdb.py`: 解析IMDB数据集的工具。
@@ -156,7 +156,7 @@ if args.preprocess == "true":
```
> 转换成功后会在`preprocess_path`路径下生成`mindrecord`文件; 通常该操作在数据集不变的情况下,无需每次训练都执行。
-> `convert_to_mindrecord`函数的具体实现请参考
+> `convert_to_mindrecord`函数的具体实现请参考
> 其中包含两大步骤:
> 1. 解析文本数据集,包括编码、分词、对齐、处理GloVe原始数据,使之能够适应网络结构。
@@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0],
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
```
-> `SentimentNet`网络结构的具体实现请参考
+> `SentimentNet`网络结构的具体实现请参考
### 预训练模型
@@ -215,7 +215,7 @@ else:
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("============== Training Success ==============")
```
-> `lstm_create_dataset`函数的具体实现请参考
+> `lstm_create_dataset`函数的具体实现请参考
### 模型验证