From 0d87042f5bc98348805ca07b178271564d74391d Mon Sep 17 00:00:00 2001 From: lvmingfu <630944715@qq.com> Date: Fri, 24 Jul 2020 19:17:48 +0800 Subject: [PATCH] Optimize quick_start content in notebook --- tutorials/notebook/quick_start.ipynb | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/tutorials/notebook/quick_start.ipynb b/tutorials/notebook/quick_start.ipynb index 8f425891f3..7afac1140a 100644 --- a/tutorials/notebook/quick_start.ipynb +++ b/tutorials/notebook/quick_start.ipynb @@ -330,9 +330,10 @@ "metadata": {}, "source": [ "其中\n", - "
`batch_size`:每组包含的数据个数,现设置每组包含32个数据。\n", - "
`repeat_size`:数据集复制的数量。\n", - "
先进行`shuffle`、`batch`操作,再进行`repeat`操作,这样能保证1个`epoch`内数据不重复。" + "- `batch_size`:每组包含的数据个数,现设置每组包含32个数据。\n", + "- `repeat_size`:数据集复制的数量。\n", + "\n", + "先进行`shuffle`、`batch`操作,再进行`repeat`操作,这样能保证1个`epoch`内数据不重复。" ] }, { @@ -700,8 +701,6 @@ "\n", "定义了损失函数后,可以得到损失函数关于权重的梯度。梯度用于指示优化器优化权重的方向,以提高模型性能。\n", "\n", - "定义损失函数。\n", - "\n", "MindSpore支持的损失函数有`SoftmaxCrossEntropyWithLogits`、`L1Loss`、`MSELoss`等。这里使用`SoftmaxCrossEntropyWithLogits`损失函数。" ] }, -- Gitee