From 57ab050b17d34f59fb581fb828a84c475fd124f0 Mon Sep 17 00:00:00 2001 From: ms_yan <6576637+ms_yan@user.noreply.gitee.com> Date: Wed, 29 Jul 2020 09:50:20 +0800 Subject: [PATCH] repair tutorial import problem --- .../use/data_preparation/data_processing_and_augmentation.md | 3 +-- .../source_en/use/data_preparation/loading_the_datasets.md | 1 + .../use/data_preparation/data_processing_and_augmentation.md | 3 +-- .../source_zh_cn/use/data_preparation/loading_the_datasets.md | 1 + 4 files changed, 4 insertions(+), 4 deletions(-) diff --git a/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md b/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md index b3fe180a5b..3a861abe2a 100644 --- a/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md +++ b/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md @@ -276,9 +276,9 @@ Data augmentation requires the `map` function. For details about how to use the 1. Import the module to the code. ```python + from mindspore.dataset.transforms.vision import Inter import mindspore.dataset.transforms.vision.c_transforms as transforms import matplotlib.pyplot as plt - import matplotlib.image as mpimg ``` 2. Define data augmentation operators. The following uses `Resize` as an example: ```python @@ -305,7 +305,6 @@ Figure 2: Image after its size is reset ```python import mindspore.dataset.transforms.vision.py_transforms as transforms import matplotlib.pyplot as plt - import matplotlib.image as mpimg ``` 2. Define data augmentation operators and use the `ComposeOp` API to combine multiple data augmentation operations. The following uses `RandomCrop` as an example: ```python diff --git a/tutorials/source_en/use/data_preparation/loading_the_datasets.md b/tutorials/source_en/use/data_preparation/loading_the_datasets.md index 4ffaf9de19..955183815b 100644 --- a/tutorials/source_en/use/data_preparation/loading_the_datasets.md +++ b/tutorials/source_en/use/data_preparation/loading_the_datasets.md @@ -61,6 +61,7 @@ To read a dataset using the `MindDataset` object, perform the following steps: 1. Create `MindDataset` for reading data. ```python + import os CV_FILE_NAME = os.path.join(MODULE_PATH, "./imagenet.mindrecord") data_set = ds.MindDataset(dataset_file=CV_FILE_NAME) ``` diff --git a/tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md b/tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md index fad8413cfd..277da870e0 100644 --- a/tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md +++ b/tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md @@ -276,9 +276,9 @@ MindSpore提供`c_transforms`模块以及`py_transforms`模块函数供用户进 1. 将该模块引入进代码。 ```python + from mindspore.dataset.transforms.vision import Inter import mindspore.dataset.transforms.vision.c_transforms as transforms import matplotlib.pyplot as plt - import matplotlib.image as mpimg ``` 2. 定义数据增强算子,以`Resize`为例: ```python @@ -305,7 +305,6 @@ MindSpore提供`c_transforms`模块以及`py_transforms`模块函数供用户进 ```python import mindspore.dataset.transforms.vision.py_transforms as transforms import matplotlib.pyplot as plt - import matplotlib.image as mpimg ``` 2. 定义数据增强算子,通过`ComposeOp`接口将多个数据增强组合使用, 以`RandomCrop`为例: ```python diff --git a/tutorials/source_zh_cn/use/data_preparation/loading_the_datasets.md b/tutorials/source_zh_cn/use/data_preparation/loading_the_datasets.md index 26ddc142db..2f1a0ae827 100644 --- a/tutorials/source_zh_cn/use/data_preparation/loading_the_datasets.md +++ b/tutorials/source_zh_cn/use/data_preparation/loading_the_datasets.md @@ -61,6 +61,7 @@ MindSpore天然支持读取MindSpore数据格式——`MindRecord`存储的数 1. 创建`MindDataset`,用于读取数据。 ```python + import os CV_FILE_NAME = os.path.join(MODULE_PATH, "./imagenet.mindrecord") data_set = ds.MindDataset(dataset_file=CV_FILE_NAME) ``` -- Gitee