diff --git a/api/source_en/api/python/mindspore/mindspore.nn.probability.rst b/api/source_en/api/python/mindspore/mindspore.nn.probability.rst
index 9ed8e3699313bcc607274c7616faa39cd49d6f23..2235f574850eceaf0f26a4d6a1b2c4927a2a247e 100644
--- a/api/source_en/api/python/mindspore/mindspore.nn.probability.rst
+++ b/api/source_en/api/python/mindspore/mindspore.nn.probability.rst
@@ -12,7 +12,14 @@ mindspore.nn.probability.bnn_layers
.. automodule:: mindspore.nn.probability.bnn_layers
:members:
+ :exclude-members: ConvReparam , DenseReparam
+ .. autoclass:: ConvReparam(in_channels, out_channels, kernel_size,stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_prior_fn=NormalPrior, weight_posterior_fn=
## Installation
diff --git a/docs/source_en/design/mindinsight/graph_visual_design.md b/docs/source_en/design/mindinsight/graph_visual_design.md
index d4d4efaf3a47cf51c0b77522bde76dc94ae5f8e7..1aa1ab694d04bbb8d7d4026780b254cb6add957e 100644
--- a/docs/source_en/design/mindinsight/graph_visual_design.md
+++ b/docs/source_en/design/mindinsight/graph_visual_design.md
@@ -1,6 +1,6 @@
# Computational Graph Visualization Design
-`Ascend` `GPU` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
+`Ascend` `GPU` `CPU` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
diff --git a/docs/source_en/design/mindinsight/tensor_visual_design.md b/docs/source_en/design/mindinsight/tensor_visual_design.md
index 3f3a21e5eeccf1bdc1b926b28cde8ba048acb67f..8117ef8e0e0e19e2353c933b4c0d8998e9c83e4d 100644
--- a/docs/source_en/design/mindinsight/tensor_visual_design.md
+++ b/docs/source_en/design/mindinsight/tensor_visual_design.md
@@ -1,6 +1,6 @@
# Tensor Visualization Design
-`Ascend` `GPU` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
+`Ascend` `GPU` `CPU` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
diff --git a/docs/source_en/design/mindinsight/training_visual_design.md b/docs/source_en/design/mindinsight/training_visual_design.md
index fdc47ea1e516d92e509fa6d49a50b5f83ac7ad38..0b19c78cff668b7ad76c49b1c3980aaebd82a3de 100644
--- a/docs/source_en/design/mindinsight/training_visual_design.md
+++ b/docs/source_en/design/mindinsight/training_visual_design.md
@@ -1,5 +1,7 @@
# Overall Design of Training Visualization
+`Ascend` `GPU` `CPU` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
+
- [Overall Design of Training Visualization](#overall-design-of-training-visualization)
diff --git a/docs/source_en/network_list.md b/docs/source_en/network_list.md
index 916efdde0c895d7038a1c16cc6e821e6784ad9cd..1f5a802e5d42d39d5f4706defe431d687145e9dd 100644
--- a/docs/source_en/network_list.md
+++ b/docs/source_en/network_list.md
@@ -23,10 +23,12 @@
|Computer Vision (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Vision (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
+| Computer Vision (CV) | Image Classification | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification
Image Classification
Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Vision (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Vision (CV) | Targets Detection | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
+| Computer Vision (CV) | Targets Detection | [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | Supported | Doing | Doing
| Computer Vision (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| Computer Vision (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Computer Vision(CV) | Targets Detection | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
@@ -34,8 +36,8 @@
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
-| Natural Language Processing (NLP) | Natural Language Understanding | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
-| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
+| Natural Language Processing (NLP) | Natural Language Understanding | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Supported | Doing
+| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Supported | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
diff --git a/docs/source_en/operator_list.md b/docs/source_en/operator_list.md
index b4c760c3175107added8c5376538b050a492c89f..3a79b0a2b9e79d7375608e4ed9a421cf1360a1f4 100644
--- a/docs/source_en/operator_list.md
+++ b/docs/source_en/operator_list.md
@@ -102,7 +102,7 @@
| [mindspore.ops.operations.Acosh](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Acosh) | Doing | Doing | Doing | nn_ops
| [mindspore.ops.operations.FloorMod](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.FloorMod) | Supported | Doing | Doing | nn_ops
| [mindspore.ops.operations.Elu](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Elu) | Supported | Doing | Doing | nn_ops
-| [mindspore.ops.operations.MirrorPad](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.MirrorPad) | Doing | Doing | Doing | nn_ops
+| [mindspore.ops.operations.MirrorPad](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.MirrorPad) | Supported | Supported | Doing | nn_ops
| [mindspore.ops.operations.Unpack](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Unpack) | Supported | Doing | Doing | nn_ops
| [mindspore.ops.operations.Pack](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Pack) | Supported | Doing | Doing | nn_ops
| [mindspore.ops.operations.L2Loss](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.L2Loss) | Supported | Doing | Doing | nn_ops
@@ -184,8 +184,8 @@
| [mindspore.ops.operations.Mul](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Mul) | Supported | Supported | Supported | math_ops
| [mindspore.ops.operations.Square](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Square) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.SquareSumAll](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.SquareSumAll) | Supported | Doing | Doing | math_ops
-| [mindspore.ops.operations.Rsqrt](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Rsqrt) | Supported | Supported | Doing | math_ops
-| [mindspore.ops.operations.Sqrt](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Sqrt) | Supported | Supported | Doing | math_ops
+| [mindspore.ops.operations.Rsqrt](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Rsqrt) | Supported | Doing | Doing | math_ops
+| [mindspore.ops.operations.Sqrt](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Sqrt) | Supported | Doing | Doing | math_ops
| [mindspore.ops.operations.Reciprocal](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Reciprocal) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.Pow](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Pow) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.Exp](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Exp) | Supported | Supported | Doing | math_ops
diff --git a/docs/source_en/roadmap.md b/docs/source_en/roadmap.md
index a9525b2e967e301fdc33201d7263ac9a1c896a9e..befe13ad85fa0bcbd51743290f7a8b7af42498dc 100644
--- a/docs/source_en/roadmap.md
+++ b/docs/source_en/roadmap.md
@@ -69,11 +69,14 @@ We sincerely hope that you can join the discussion in the user community and con
* Protect data privacy during training and inference.
## Inference Framework
-* Support TensorFlow, Caffe, and ONNX model formats.
-* Support iOS.
-* Improve more CPU operators.
-* Support more CV/NLP models.
-* Online learning.
-* Support deployment on IoT devices.
-* Low-bit quantization.
-* CPU and NPU heterogeneous scheduling.
+* Continuous optimization for operator, and add more operator.
+* Support NLP neural networks.
+* Visualization for MindSpore lite model.
+* MindSpore Micro, which supports ARM Cortex-A and Cortex-M with Ultra-lightweight.
+* Support re-training and federated learning on mobile device.
+* Support auto-parallel.
+* MindData on mobile device, which supports image resize and pixel data transform.
+* Support post-training quantize, which supports inference with mixed precision to improve performance.
+* Support Kirin NPU, MTK APU.
+* Support inference for multi models with pipeline.
+* C++ API for model construction.
diff --git a/docs/source_zh_cn/FAQ.md b/docs/source_zh_cn/FAQ.md
index 9873b933d666d18b00026515f9cfd14a228f23f5..1698974891db256511ea819d05b944e46ef69ae7 100644
--- a/docs/source_zh_cn/FAQ.md
+++ b/docs/source_zh_cn/FAQ.md
@@ -1,5 +1,7 @@
# FAQ
+`Ascend` `GPU` `CPU` `环境准备` `模型导出` `模型训练` `初级` `中级` `高级`
+
- [FAQ](#faq)
@@ -16,6 +18,7 @@
- [特性支持](#特性支持)
+
## 安装类
diff --git a/docs/source_zh_cn/design/mindinsight/graph_visual_design.md b/docs/source_zh_cn/design/mindinsight/graph_visual_design.md
index b90f8d882ceccfc679c2f91d77fc8d2351cc9a0e..fe3e6d334cb57caef2d76f013dd150f9c1f39414 100644
--- a/docs/source_zh_cn/design/mindinsight/graph_visual_design.md
+++ b/docs/source_zh_cn/design/mindinsight/graph_visual_design.md
@@ -1,6 +1,6 @@
# 计算图可视设计
-`Ascend` `GPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
+`Ascend` `GPU` `CPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
diff --git a/docs/source_zh_cn/design/mindinsight/images/time_order_profiler.png b/docs/source_zh_cn/design/mindinsight/images/time_order_profiler.png
index 251daa59ae9bb785990bdd8680840896e87c1900..35eef99934ce9d743ebe0294e18ff0b5ea40abab 100644
Binary files a/docs/source_zh_cn/design/mindinsight/images/time_order_profiler.png and b/docs/source_zh_cn/design/mindinsight/images/time_order_profiler.png differ
diff --git a/docs/source_zh_cn/design/mindinsight/profiler_design.md b/docs/source_zh_cn/design/mindinsight/profiler_design.md
index cc13bf9eea14a67d40f2672f517e078d6764e526..8bfd00397831e4fc25bab87fd25af3b27acc28fe 100644
--- a/docs/source_zh_cn/design/mindinsight/profiler_design.md
+++ b/docs/source_zh_cn/design/mindinsight/profiler_design.md
@@ -1,5 +1,7 @@
# Profiler设计文档
+`Ascend` `GPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
+
- [Profiler设计文档](#profiler设计文档)
diff --git a/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md b/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md
index d84cb8ba7cd23c97dd2a5ca4398128f36b3105a5..eca40e518ca471120ad52ed0b78abb40ab4c00a6 100644
--- a/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md
+++ b/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md
@@ -1,6 +1,6 @@
# 张量可视设计
-`Ascend` `GPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
+`Ascend` `GPU` `CPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
diff --git a/docs/source_zh_cn/design/mindinsight/training_visual_design.md b/docs/source_zh_cn/design/mindinsight/training_visual_design.md
index 1c86233723b7bd456efd5b7790279f828351d841..8dae35eef0244c8f66322912bf1464e53ade5965 100644
--- a/docs/source_zh_cn/design/mindinsight/training_visual_design.md
+++ b/docs/source_zh_cn/design/mindinsight/training_visual_design.md
@@ -1,6 +1,6 @@
# 训练可视总体设计
-`Ascend` `GPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
+`Ascend` `GPU` `CPU` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
diff --git a/docs/source_zh_cn/design/mindspore/distributed_training_design.md b/docs/source_zh_cn/design/mindspore/distributed_training_design.md
index ae38fdd6bc47fb2215bcdc931fa0d46c953f9af0..ab026a6526ac6fc4d4d113e102e24e0fa945eb68 100644
--- a/docs/source_zh_cn/design/mindspore/distributed_training_design.md
+++ b/docs/source_zh_cn/design/mindspore/distributed_training_design.md
@@ -29,7 +29,7 @@
### 集合通信
-集合通信指在一组进程间通信,组内所有进程满足一定规则的发送和接收数据。MindSpore通过集合通信的方式进行并行训练过程中的数据传输工作,在Ascend芯片上它依赖于华为集合通信库HCCL完成。
+集合通信指在一组进程间通信,组内所有进程满足一定规则的发送和接收数据。MindSpore通过集合通信的方式进行并行训练过程中的数据传输工作,在Ascend芯片上它依赖于华为集合通信库`HCCL`完成,在GPU上它依赖于英伟达集合通信库`NCCL`完成。
### 同步模式
@@ -41,11 +41,11 @@
### 数据并行原理
-
+
1. 通用的张量排布模型
在上面的架构图中,自动并行流程会对单机的正向计算图(ANF Graph)进行遍历,以算子(Distributed Operator)为单位对张量进行切分建模,表示一个算子的输入输出张量如何分布到集群各个卡上(Tensor Layout)。这种模型充分地表达了张量和设备间的映射关系,并且可以通过算法推导得到任意排布的张量间通信转换方式(Tensor Redistribution)。
为了得到张量的排布模型,每个算子都具有切分策略(Parallel Strategy),它表示算子的各个输入在相应维度的切分情况。通常情况下只要满足以2为基、均匀分配的原则,张量的任意维度均可切分。以下图为例,这是一个三维矩阵乘操作,它的切分策略由两个元组构成,分别表示`input`和`weight`的切分形式。其中元组中的元素与张量维度一一对应,`2^N`为切分份数,`1`表示不切。当我们想表示一个数据并行切分策略时,即`input`的`batch`维度切分,其他维度不切,可以表达为`strategy=((2^N, 1, 1),(1, 1, 1))`;当表示一个模型并行切分策略时,即`weight`的`channel`维度切分,其他维度不切,可以表达为`strategy=((1, 1, 1),(1, 1, 2^N))`;当表示一个混合并行切分策略时,可以表达为`strategy=((2^N, 1, 1),(1, 1, 2^N))`。
-
-
+ 
+
依据算子的切分策略,框架将自动推导得到算子输入张量和输出张量的排布模型。这个排布模型由`device_matrix`,`tensor_shape`和`tensor map`组成,分别表示设备矩阵形状、张量形状、设备和张量维度间的映射关系。根据排布模型框架可以自动实现对整图的切分,并推导插入算子内张量重复计算及算子间不同排布的张量变换所需要的通信操作。以数据并行转模型并行为例,第一个数据并行矩阵乘的输出在`batch`维度存在切分,而第二个模型并行矩阵乘的输入需要全量张量,框架将会自动插入`AllGather`算子实现排布变换。
-
+ 
总体来说这种分布式表达打破了数据并行和模型并行的边界,轻松实现混合并行。并且用户无需感知模型各切片放到哪个设备上运行,框架会自动调度分配。从脚本层面上,用户仅需构造单机网络,即可表达并行算法逻辑。
2. 高效的并行策略搜索算法
- 当用户熟悉了算子的切分表达,并手动对算子配置切分策略,这就是`SEMI_AUTO_PARALLEL`半自动并行模式。这种方式对手动调优有帮助,但还是具有一定的调试难度,用户需要掌握并行原理,并根据网络结构、集群拓扑等计算分析得到高性能的并行方案。为了进一步帮助用户加速并行网络训练过程,在半自动并行模式的基础上,`AUTO_PARALLEL`自动并行模式引入了并行切分策略自动搜索的特性。自动并行围绕昇腾AI处理器构建代价函数模型(Cost Model),计算出一定数据量、一定算子在不同切分策略下的计算开销(Computation Cost),内存开销(Memory Cost)及通信开销(Communication Cost)。然后通过动态规划算法(Dynamic Programming),以单卡的内存上限为约束条件,高效地搜索出性能较优的切分策略。
+ 当用户熟悉了算子的切分表达,并手动对算子配置切分策略,这就是`SEMI_AUTO_PARALLEL`半自动并行模式。这种方式对手动调优有帮助,但还是具有一定的调试难度,用户需要掌握并行原理,并根据网络结构、集群拓扑等计算分析得到高性能的并行方案。为了进一步帮助用户加速并行网络训练过程,在半自动并行模式的基础上,`AUTO_PARALLEL`自动并行模式引入了并行切分策略自动搜索的特性。自动并行围绕硬件平台构建相应的代价函数模型(Cost Model),计算出一定数据量、一定算子在不同切分策略下的计算开销(Computation Cost),内存开销(Memory Cost)及通信开销(Communication Cost)。然后通过动态规划算法(Dynamic Programming)或者递归规划算法(Recursive Programming),以单卡的内存上限为约束条件,高效地搜索出性能较优的切分策略。
策略搜索这一步骤代替了用户手动指定模型切分,在短时间内可以得到较高性能的切分方案,极大降低了并行训练的使用门槛。
diff --git a/docs/source_zh_cn/design/mindspore/images/auto_parallel.png b/docs/source_zh_cn/design/mindspore/images/auto_parallel.png
deleted file mode 100644
index 544e65eee9b5a6ac984ff2315022135ce7cd4456..0000000000000000000000000000000000000000
Binary files a/docs/source_zh_cn/design/mindspore/images/auto_parallel.png and /dev/null differ
diff --git a/docs/source_zh_cn/design/mindspore/images/auto_parallel_design.png b/docs/source_zh_cn/design/mindspore/images/auto_parallel_design.png
new file mode 100644
index 0000000000000000000000000000000000000000..7f1006775ed0006208ae1086b8cd062b463237d6
Binary files /dev/null and b/docs/source_zh_cn/design/mindspore/images/auto_parallel_design.png differ
diff --git a/docs/source_zh_cn/design/mindspore/images/operator_split.png b/docs/source_zh_cn/design/mindspore/images/operator_split.png
index 1fe2fda44fc148c7443b5c6dd6f95a3a0a2a1e99..51dd93cd853cda7b2b284e4955bbc941f3c1b1dd 100644
Binary files a/docs/source_zh_cn/design/mindspore/images/operator_split.png and b/docs/source_zh_cn/design/mindspore/images/operator_split.png differ
diff --git a/docs/source_zh_cn/design/mindspore/images/tensor_redistribution.png b/docs/source_zh_cn/design/mindspore/images/tensor_redistribution.png
index 86b4630bb52146479ec4c0f766059d22db12bf10..ce4485c8cbf91c721c9dd19ab105a58cd3d18d22 100644
Binary files a/docs/source_zh_cn/design/mindspore/images/tensor_redistribution.png and b/docs/source_zh_cn/design/mindspore/images/tensor_redistribution.png differ
diff --git a/docs/source_zh_cn/network_list.md b/docs/source_zh_cn/network_list.md
index 6e5954b63a4f07f43f47273607a92e8ed130fea1..3e220484c721e7c0cfbf5a2e59b9f59652e8334e 100644
--- a/docs/source_zh_cn/network_list.md
+++ b/docs/source_zh_cn/network_list.md
@@ -23,10 +23,12 @@
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
+| 计算机视觉(CV) | 图像分类(Image Classification) | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)
目标检测(Image Classification)
语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
+| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
@@ -34,8 +36,8 @@
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
-| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
-| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
+| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Supported | Doing
+| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Supported | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
diff --git a/docs/source_zh_cn/operator_list.md b/docs/source_zh_cn/operator_list.md
index 6244a7101f59c9705ec876ff3271bc7774026c14..db8e29e3935556c95e4aabc477cc297d2561c8d0 100644
--- a/docs/source_zh_cn/operator_list.md
+++ b/docs/source_zh_cn/operator_list.md
@@ -102,7 +102,7 @@
| [mindspore.ops.operations.Acosh](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Acosh) | Doing | Doing | Doing | nn_ops
| [mindspore.ops.operations.FloorMod](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.FloorMod) | Supported | Doing | Doing | nn_ops
| [mindspore.ops.operations.Elu](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Elu) | Supported | Doing | Doing | nn_ops
-| [mindspore.ops.operations.MirrorPad](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.MirrorPad) | Doing | Doing | Doing | nn_ops
+| [mindspore.ops.operations.MirrorPad](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.MirrorPad) | Supported | Supported | Doing | nn_ops
| [mindspore.ops.operations.Unpack](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Unpack) | Supported | Doing | Doing | nn_ops
| [mindspore.ops.operations.Pack](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Pack) | Supported| Doing | Doing | nn_ops
| [mindspore.ops.operations.L2Loss](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.L2Loss) | Supported | Doing | Doing | nn_ops
@@ -184,8 +184,8 @@
| [mindspore.ops.operations.Mul](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Mul) | Supported | Supported | Supported | math_ops
| [mindspore.ops.operations.Square](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Square) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.SquareSumAll](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.SquareSumAll) | Supported | Doing | Doing | math_ops
-| [mindspore.ops.operations.Rsqrt](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Rsqrt) | Supported | Supported | Doing | math_ops
-| [mindspore.ops.operations.Sqrt](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Sqrt) | Supported | Supported | Doing | math_ops
+| [mindspore.ops.operations.Rsqrt](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Rsqrt) | Supported | Doing | Doing | math_ops
+| [mindspore.ops.operations.Sqrt](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Sqrt) | Supported | Doing | Doing | math_ops
| [mindspore.ops.operations.Reciprocal](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Reciprocal) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.Pow](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Pow) | Supported | Supported | Doing | math_ops
| [mindspore.ops.operations.Exp](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html#mindspore.ops.operations.Exp) | Supported | Supported | Doing | math_ops
diff --git a/docs/source_zh_cn/roadmap.md b/docs/source_zh_cn/roadmap.md
index a985100c4d335268130a07263065889bf6cdf7bb..1dfd7945b1079c44d1d312414d8a0f2368fd7e87 100644
--- a/docs/source_zh_cn/roadmap.md
+++ b/docs/source_zh_cn/roadmap.md
@@ -70,11 +70,14 @@
* 保护训练和推理过程中的数据隐私
## 推理框架
-* 提供Tensorflow/Caffe/ONNX模型格式支持
-* IOS系统支持
-* 完善更多的CPU算子
-* 更多CV/NLP模型支持
-* 在线学习
-* 支持部署在IOT设备
-* 低比特量化
-* CPU和NPU异构调度
+* 算子性能与完备度的持续优化
+* 支持语音模型推理
+* 端侧模型的可视化
+* Micro方案,适用于嵌入式系统的超轻量化推理, 支持ARM Cortex-A、Cortex-M硬件
+* 支持端侧重训及联邦学习
+* 端侧自动并行特性
+* 端侧MindData,包含图片Resize、像素数据转换等功能
+* 配套MindSpore混合精度量化训练(或训练后量化),实现混合精度推理,提升推理性能
+* 支持Kirin NPU、MTK APU等AI加速硬件
+* 支持多模型推理pipeline
+* C++构图接口
diff --git a/install/mindspore_cpu_install.md b/install/mindspore_cpu_install.md
index e31b2a72edd0edfc3a4879fc958d6267adc19651..721cad66b18b2db7b7fdc312765fc60c4a5db594 100644
--- a/install/mindspore_cpu_install.md
+++ b/install/mindspore_cpu_install.md
@@ -97,7 +97,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---------------------- | :------------------ | :----------------------------------------------------------- | :----------------------- |
-| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- MindSpore master
- 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py) | 与可执行文件安装依赖相同 |
+| MindArmour master | - Ubuntu 18.04 x86_64
- Ubuntu 18.04 aarch64 | - [Python](https://www.python.org/downloads/) 3.7.5
- MindSpore master
- 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
diff --git a/install/mindspore_cpu_install_en.md b/install/mindspore_cpu_install_en.md
index 3da8d9eff691e60b198680f084259888b8dffd20..d21f05bdeb3d451ff36588a8346a9753bdf831d6 100644
--- a/install/mindspore_cpu_install_en.md
+++ b/install/mindspore_cpu_install_en.md
@@ -97,7 +97,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
-| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- MindSpore master
- For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py). | Same as the executable file installation dependencies. |
+| MindArmour master | - Ubuntu 18.04 x86_64
- Ubuntu 18.04 aarch64 | - [Python](https://www.python.org/downloads/) 3.7.5
- MindSpore master
- For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
diff --git a/install/mindspore_d_install.md b/install/mindspore_d_install.md
index f355690cddd86d88ba89a4b8b417f14917acdd05..a0d6eb70a9f6d7f7c4452a593695e95c024c135f 100644
--- a/install/mindspore_d_install.md
+++ b/install/mindspore_d_install.md
@@ -32,7 +32,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
-| MindSpore master | - Ubuntu 18.04 aarch64
- Ubuntu 18.04 x86_64
- CentOS 7.6 aarch64
- CentOS 7.6 x86_64
- EulerOS 2.8 aarch64
- EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
- 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**
- [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [wheel](https://pypi.org/project/wheel/) >= 0.32.0
- [GCC](https://gcc.gnu.org/releases.html) 7.3.0
- [CMake](https://cmake.org/download/) >= 3.14.1
- [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
**安装依赖:**
与可执行文件安装依赖相同 |
+| MindSpore master | - Ubuntu 18.04 aarch64
- Ubuntu 18.04 x86_64
- EulerOS 2.8 aarch64
- EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
- 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**
- [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [wheel](https://pypi.org/project/wheel/) >= 0.32.0
- [GCC](https://gcc.gnu.org/releases.html) 7.3.0
- [CMake](https://cmake.org/download/) >= 3.14.1
- [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
**安装依赖:**
与可执行文件安装依赖相同 |
- 确认当前用户有权限访问Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))的安装路径`/usr/local/Ascend`,若无权限,需要root用户将当前用户添加到`/usr/local/Ascend`所在的用户组,具体配置请详见配套软件包的说明文档。
- GCC 7.3.0可以直接通过apt命令安装。
diff --git a/install/mindspore_d_install_en.md b/install/mindspore_d_install_en.md
index 4eb1e3ae067791ac98787314d78af52cfc1999f6..827f23bb76e748d6304eabf3444d7974956bc0a1 100644
--- a/install/mindspore_d_install_en.md
+++ b/install/mindspore_d_install_en.md
@@ -32,7 +32,7 @@ This document describes how to quickly install MindSpore in an Ascend AI process
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
-| MindSpore master | - Ubuntu 18.04 aarch64
- Ubuntu 18.04 x86_64
- CentOS 7.6 aarch64
- CentOS 7.6 x86_64
- EulerOS 2.8 aarch64
- EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
- For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**
- [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [wheel](https://pypi.org/project/wheel/) >= 0.32.0
- [GCC](https://gcc.gnu.org/releases.html) 7.3.0
- [CMake](https://cmake.org/download/) >= 3.14.1
- [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
**Installation dependencies:**
same as the executable file installation dependencies. |
+| MindSpore master | - Ubuntu 18.04 aarch64
- Ubuntu 18.04 x86_64
- EulerOS 2.8 aarch64
- EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
- For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**
- [Python](https://www.python.org/downloads/) 3.7.5
- Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816))
- [wheel](https://pypi.org/project/wheel/) >= 0.32.0
- [GCC](https://gcc.gnu.org/releases.html) 7.3.0
- [CMake](https://cmake.org/download/) >= 3.14.1
- [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5
- [gmp](https://gmplib.org/download/gmp/) 6.1.2
**Installation dependencies:**
same as the executable file installation dependencies. |
- Confirm that the current user has the right to access the installation path `/usr/local/Ascend `of Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C10T200](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251661816)). If not, the root user needs to add the current user to the user group where `/usr/local/Ascend` is located. For the specific configuration, please refer to the software package instruction document.
- GCC 7.3.0 can be installed by using apt command.
diff --git a/lite/docs/source_en/architecture.md b/lite/docs/source_en/architecture.md
index 5878f5b22076b4d53e68c63697f9cfe4c56a7ff6..64585775720d39c365190d9f8f24c82931cf24e3 100644
--- a/lite/docs/source_en/architecture.md
+++ b/lite/docs/source_en/architecture.md
@@ -1,3 +1,19 @@
-# Overall Architecture
+# Overall Architecture
-
+
+
+The overall architecture of MindSpore Lite is as follows:
+
+
+
+- **Frontend:** generates models. You can use the model building API to build models and convert third-party models and models trained by MindSpore to MindSpore Lite models. Third-party models include TensorFlow Lite, Caffe 1.0, and ONNX models.
+
+- **IR:** defines the tensors, operators, and graphs of MindSpore.
+
+- **Backend:** optimizes graphs based on IR, including graph high level optimization (GHLO), graph low level optimization (GLLO), and quantization. GHLO is responsible for hardware-independent optimization, such as operator fusion and constant folding. GLLO is responsible for hardware-related optimization. Quantizer supports quantization methods after training, such as weight quantization and activation value quantization.
+
+- **Runtime:** inference runtime of intelligent devices. Sessions are responsible for session management and provide external APIs. The thread pool and parallel primitives are responsible for managing the thread pool used for graph execution. Memory allocation is responsible for memory overcommitment of each operator during graph execution. The operator library provides the CPU and GPU operators.
+
+- **Micro:** runtime of IoT devices, including the model generation .c file, thread pool, memory overcommitment, and operator library.
+
+Runtime and Micro share the underlying infrastructure layers, such as the operator library, memory allocation, thread pool, and parallel primitives.
diff --git a/lite/docs/source_en/images/MindSpore-Lite-architecture.png b/lite/docs/source_en/images/MindSpore-Lite-architecture.png
new file mode 100644
index 0000000000000000000000000000000000000000..abf28796690f5649f8bc92382dfd4c2c83187620
Binary files /dev/null and b/lite/docs/source_en/images/MindSpore-Lite-architecture.png differ
diff --git a/lite/docs/source_en/operator_list.md b/lite/docs/source_en/operator_list.md
index 1c7383aad2f3457a31b7c89de4efbfbfce1d2d73..6038b5c95690dd4b30378a7101d828ef9d0cda90 100644
--- a/lite/docs/source_en/operator_list.md
+++ b/lite/docs/source_en/operator_list.md
@@ -4,121 +4,108 @@
> √ The checked items are the operators supported by MindSpore Lite。
-| Operation | CPU
FP16 | CPU
FP32 | CPU
Int8 | CPU
UInt8 | GPU
FP16 | GPU
FP32 | Operator category | Tensorflow
Lite op supported | Caffe
Lite op supported | Onnx
Lite op supported |
-|-----------------------|----------|----------|----------|-----------|----------|----------|------------------|----------|----------|----------|
-| Abs | | √ | √ | √ | | | math_ops | Abs | | Abs |
-| Add | | | | | | √ | | Add | | Add |
-| AddN | | √ | | | | | math_ops | AddN | | |
-| Argmax | | √ | √ | √ | | | array_ops | Argmax | ArgMax | ArgMax |
-| Argmin | | √ | | | | | array_ops | Argmin | | |
-| Asin | | | | | | | | | | Asin |
-| Atan | | | | | | | | | | Atan |
-| AvgPool | | √ | √ | √ | | √ | nn_ops | MeanPooling | Pooling | AveragePool |
-| BatchMatMul | √ | √ | √ | √ | | | math_ops | | | |
-| BatchNorm | | √ | | | | √ | nn_ops | | BatchNorm | BatchNormalization |
-| BatchToSpace | | | | | | | array_ops | BatchToSpace, BatchToSpaceND | | |
-| BatchToSpaceND | | | | | | | | | | |
-| BiasAdd | | √ | | √ | | √ | nn_ops | | | BiasAdd |
-| Broadcast | | √ | | | | | comm_ops | BroadcastTo | | Expand |
-| Cast | | √ | | | | | array_ops | Cast, DEQUANTIZE* | | Cast |
-| Ceil | | √ | | √ | | | math_ops | Ceil | | Ceil |
-| Concat | | √ | √ | √ | | √ | array_ops | Concat | Concat | Concat |
-| Constant | | | | | | | | | | Constant |
-| Conv1dTranspose | | | | √ | | | layer/conv | | | |
-| Conv2d | √ | √ | √ | √ | | √ | layer/conv | Conv2D | Convolution | Conv |
-| Conv2dTranspose | | √ | √ | √ | | √ | layer/conv | DeConv2D | Deconvolution | ConvTranspose |
-| Cos | | √ | √ | √ | | | math_ops | Cos | | Cos |
-| Crop | | | | | | | | | Crop | |
-| DeDepthwiseConv2D | | | | | | | | | Deconvolution| ConvTranspose |
-| DepthToSpace | | | | | | | | DepthToSpace | | DepthToSpace |
-| DepthwiseConv2dNative | √ | √ | √ | √ | | √ | nn_ops | DepthwiseConv2D | Convolution | Convolution |
-| Div | | √ | √ | √ | | √ | math_ops | Div | | Div |
-| Dropout | | | | | | | | | | Dropout |
-| Eltwise | | | | | | | | | Eltwise | |
-| Elu | | | | | | | | Elu | | Elu |
-| Equal | | √ | √ | √ | | | math_ops | Equal | | Equal |
-| Exp | | √ | | | | | math_ops | Exp | | Exp |
-| ExpandDims | | √ | | | | | array_ops | | | |
-| Fill | | √ | | | | | array_ops | Fill | | |
-| Flatten | | | | | | | | | Flatten | |
-| Floor | | √ | √ | √ | | | math_ops | flOOR | | Floor |
-| FloorDiv | | √ | | | | | math_ops | FloorDiv | | |
-| FloorMod | | √ | | | | | nn_ops | FloorMod | | |
-| FullConnection | | √ | | | | | layer/basic | FullyConnected | InnerProduct | |
-| GatherNd | | √ | | | | | array_ops | GatherND | | |
-| GatherV2 | | √ | | | | | array_ops | Gather | | Gather |
-| Greater | | √ | √ | √ | | | math_ops | Greater | | Greater |
-| GreaterEqual | | √ | √ | √ | | | math_ops | GreaterEqual | | |
-| Hswish | | | | | | | | HardSwish | | |
-| L2norm | | | | | | | | L2_NORMALIZATION | | |
-| LeakyReLU | | √ | | | | √ | layer/activation | LeakyRelu | | LeakyRelu |
-| Less | | √ | √ | √ | | | math_ops | Less | | Less |
-| LessEqual | | √ | √ | √ | | | math_ops | LessEqual | | |
-| LocalResponseNorm | | | | | | | | LocalResponseNorm | | Lrn |
-| Log | | √ | √ | √ | | | math_ops | Log | | Log |
-| LogicalAnd | | √ | | | | | math_ops | LogicalAnd | | |
-| LogicalNot | | √ | √ | √ | | | math_ops | LogicalNot | | |
-| LogicalOr | | √ | | | | | math_ops | LogicalOr | | |
-| LSTM | | √ | | | | | layer/lstm | | | |
-| MatMul | √ | √ | √ | √ | | √ | math_ops | | | MatMul |
-| Maximum | | | | | | | math_ops | Maximum | | Max |
-| MaxPool | | √ | √ | √ | | √ | nn_ops | MaxPooling | Pooling | MaxPool |
-| Minimum | | | | | | | math_ops | Minimum | | Min |
-| Mul | | √ | √ | √ | | √ | math_ops | Mul | | Mul |
-| Neg | | | | | | | math_ops | | | Neg |
-| NotEqual | | √ | √ | √ | | | math_ops | NotEqual | | |
-| OneHot | | √ | | | | | layer/basic | OneHot | | |
-| Pack | | √ | | | | | nn_ops | | | |
-| Pad | | √ | √ | √ | | | nn_ops | Pad | | Pad |
-| Pow | | √ | √ | √ | | | math_ops | Pow | Power | Power |
-| PReLU | | √ | √ | √ | | √ | layer/activation | Prelu | PReLU | PRelu |
-| Range | | √ | | | | | layer/basic | Range | | |
-| Rank | | √ | | | | | array_ops | Rank | | |
-| RealDiv | | √ | √ | √ | | √ | math_ops | RealDiv | | |
-| ReduceMax | | √ | √ | √ | | | math_ops | ReduceMax | | ReduceMax |
-| ReduceMean | | √ | √ | √ | | | math_ops | Mean | | ReduceMean |
-| ReduceMin | | √ | √ | √ | | | math_ops | ReduceMin | | ReduceMin |
-| ReduceProd | | √ | √ | √ | | | math_ops | ReduceProd | | |
-| ReduceSum | | √ | √ | √ | | | math_ops | Sum | | ReduceSum |
-| ReLU | | √ | √ | √ | | √ | layer/activation | Relu | ReLU | Relu |
-| ReLU6 | | √ | | | | √ | layer/activation | Relu6 | ReLU6 | Clip* |
-| Reshape | | √ | √ | √ | | √ | array_ops | Reshape | Reshape | Reshape,Flatten |
-| Resize | | | | | | | | ResizeBilinear, NearestNeighbor | Interp | |
-| Reverse | | | | | | | | reverse | | |
-| ReverseSequence | | √ | | | | | array_ops | ReverseSequence | | |
-| Round | | √ | | √ | | | math_ops | Round | | |
-| Rsqrt | | √ | √ | √ | | | math_ops | Rsqrt | | |
-| Scale | | | | | | | | | Scale | |
-| ScatterNd | | √ | | | | | array_ops | ScatterNd | | |
-| Shape | | √ | | √ | | | array_ops | Shape | | Shape |
-| Sigmoid | | √ | √ | √ | | √ | nn_ops | Logistic | Sigmoid | Sigmoid |
-| Sin | | | | | | | | Sin | | Sin |
-| Slice | | √ | √ | √ | | √ | array_ops | Slice | | Slice |
-| Softmax | | √ | √ | √ | | √ | layer/activation | Softmax | Softmax | Softmax |
-| SpaceToBatchND | | √ | | | | | array_ops | SpaceToBatchND | | |
-| SpareToDense | | | | | | | | SpareToDense | | |
-| SpaceToDepth | | √ | | | | | array_ops | SpaceToDepth | | SpaceToDepth |
-| Split | | √ | √ | √ | | | array_ops | Split, SplitV | | |
-| Sqrt | | √ | √ | √ | | | math_ops | Sqrt | | Sqrt |
-| Square | | √ | √ | √ | | | math_ops | Square | | |
-| SquaredDifference | | | | | | | | SquaredDifference | | |
-| Squeeze | | √ | √ | √ | | | array_ops | Squeeze | | Squeeze |
-| StridedSlice | | √ | √ | √ | | | array_ops | StridedSlice | | |
-| Stack | | | | | | | | Stack | | |
-| Sub | | √ | √ | √ | | √ | math_ops | Sub | | Sub |
-| Tan | | | | | | | | | | Tan |
-| Tanh | | √ | | | | | layer/activation | Tanh | TanH | |
-| TensorAdd | | √ | √ | √ | | √ | math_ops | | | |
-| Tile | | √ | | | | | array_ops | Tile | | Tile |
-| TopK | | √ | √ | √ | | | nn_ops | TopKV2 | | |
-| Transpose | | √ | √ | √ | | √ | array_ops | Transpose | Permute | Transpose |
-| Unique | | | | | | | | Unique | | |
-| Unpack | | √ | | | | | nn_ops | | | |
-| Unsample | | | | | | | | | | Unsample |
-| Unsqueeze | | | | | | | | | | Unsqueeze |
-| Unstack | | | | | | | | Unstack | | |
-| Where | | | | | | | | Where | | |
-| ZerosLike | | √ | | | | | array_ops | ZerosLike | | |
+| Operation | CPU
FP16 | CPU
FP32 | CPU
Int8 | CPU
UInt8 | GPU
FP16 | GPU
FP32 | Tensorflow
Lite op supported | Caffe
Lite op supported | Onnx
Lite op supported |
+|-----------------------|----------|----------|-----------|----------|----------|------------------|----------|----------|----------|
+| Abs | | √ | √ | √ | | | Abs | | Abs |
+| Add | √ | √ | √ | √ | | √ | Add | | Add |
+| AddN | | √ | | | | | AddN | | |
+| Argmax | | √ | √ | √ | | | Argmax | ArgMax | ArgMax |
+| Argmin | | √ | √ | √ | | | Argmin | | |
+| AvgPool | √ | √ | √ | √ | | √ | MeanPooling| Pooling | AveragePool |
+| BatchNorm | √ | √ | √ | √ | | √ | | BatchNorm | BatchNormalization |
+| BatchToSpace | | √ | √ | √ | | | BatchToSpace, BatchToSpaceND | | |
+| BiasAdd | | √ | √ | √ | | √ | | | BiasAdd |
+| Broadcast | | √ | | | | | BroadcastTo | | Expand |
+| Cast | √ | √ | | √ | | | Cast, DEQUANTIZE* | | Cast |
+| Ceil | | √ | √ | √ | | | Ceil | | Ceil |
+| Concat | √ | √ | √ | √ | √ | √ | Concat | Concat | Concat |
+| Conv2d | √ | √ | √ | √ | √ | √ | Conv2D | Convolution | Conv |
+| Conv2dTranspose | √ | √ | √ | √ | √ | √ | DeConv2D | Deconvolution | ConvTranspose |
+| Cos | | √ | √ | √ | | | Cos | | Cos |
+| Crop | | √ | √ | √ | | | | Crop | |
+| DeDepthwiseConv2D | | √ | √ | √ | | | | Deconvolution| ConvTranspose |
+| DepthToSpace | | √ | √ | √ | | | DepthToSpace| | DepthToSpace |
+| DepthwiseConv2dNative | √ | √ | √ | √ | √ | √ | DepthwiseConv2D | Convolution | Convolution |
+| Div | √ | √ | √ | √ | | √ | Div, RealDiv | | Div |
+| Eltwise | √ | √ | | | | | | Eltwise | |
+| Elu | | √ | | | | | Elu | | Elu |
+| Equal | √ | √ | √ | √ | | | Equal | | Equal |
+| Exp | | √ | | | | | Exp | | Exp |
+| ExpandDims | | √ | | | | | | | |
+| Fill | | √ | | | | | Fill | | |
+| Flatten | | √ | | | | | | Flatten | |
+| Floor | | √ | √ | √ | | | flOOR | | Floor |
+| FloorDiv | √ | √ | | | | | FloorDiv | | |
+| FloorMod | √ | √ | | | | | FloorMod | | |
+| FullConnection | | √ | √ | √ | | | FullyConnected | InnerProduct | |
+| GatherNd | | √ | √ | √ | | | GatherND | | |
+| GatherV2 | | √ | √ | √ | | | Gather | | Gather |
+| Greater | √ | √ | √ | √ | | | Greater | | Greater |
+| GreaterEqual | √ | √ | √ | √ | | | GreaterEqual| | |
+| Hswish | √ | √ | √ | √ | | | HardSwish | | |
+| LeakyReLU | √ | √ | | | | √ | LeakyRelu | | LeakyRelu |
+| Less | √ | √ | √ | √ | | | Less | | Less |
+| LessEqual | √ | √ | √ | √ | | | LessEqual | | |
+| LRN | | √ | | | | | LocalResponseNorm | | Lrn |
+| Log | | √ | √ | √ | | | Log | | Log |
+| LogicalAnd | √ | √ | | | | | LogicalAnd | | |
+| LogicalNot | | √ | √ | √ | | | LogicalNot | | |
+| LogicalOr | √ | √ | | | | | LogicalOr | | |
+| LSTM | | √ | | | | | | | |
+| MatMul | | √ | √ | √ | √ | √ | | | MatMul |
+| Maximum | √ | √ | | | | | Maximum | | Max |
+| MaxPool | √ | √ | √ | √ | | √ | MaxPooling | Pooling | MaxPool |
+| Minimum | √ | √ | | | | | Minimum | | Min |
+| Mul | √ | √ | √ | √ | | √ | Mul | | Mul |
+| NotEqual | √ | √ | √ | √ | | | NotEqual | | |
+| OneHot | | √ | | | | | OneHot | | |
+| Pad | | √ | √ | √ | | | Pad | | Pad |
+| Pow | | √ | √ | √ | | | Pow | Power | Power |
+| PReLU | | √ | | | | √ | | PReLU | |
+| Range | | √ | | | | | Range | | |
+| Rank | | √ | | | | | Rank | | |
+| ReduceMax | √ | √ | √ | √ | | | ReduceMax | | ReduceMax |
+| ReduceMean | √ | √ | √ | √ | | | Mean | | ReduceMean |
+| ReduceMin | √ | √ | √ | √ | | | ReduceMin | | ReduceMin |
+| ReduceProd | √ | √ | √ | √ | | | ReduceProd | | |
+| ReduceSum | √ | √ | √ | √ | | | Sum | | ReduceSum |
+| ReduceSumSquare | √ | √ | √ | √ | | | | | |
+| ReLU | √ | √ | √ | √ | | √ | Relu | ReLU | Relu |
+| ReLU6 | √ | √ | √ | √ | | √ | Relu6 | ReLU6 | Clip* |
+| Reshape | √ | √ | √ | √ | | √ | Reshape | Reshape | Reshape,Flatten |
+| Resize | | √ | √ | √ | | | ResizeBilinear, NearestNeighbor | Interp | |
+| Reverse | | √ | | | | | reverse | | |
+| ReverseSequence | | √ | | | | | ReverseSequence | | |
+| Round | | √ | √ | √ | | | Round | | |
+| Rsqrt | | √ | √ | √ | | | Rsqrt | | |
+| Scale | | √ | | | | | | Scale | |
+| ScatterNd | | √ | | | | | ScatterNd | | |
+| Shape | | √ | | | | | Shape | | Shape |
+| Sigmoid | √ | √ | √ | √ | | √ | Logistic | Sigmoid | Sigmoid |
+| Sin | | √ | √ | √ | | | Sin | | Sin |
+| Slice | | √ | √ | √ | √ | √ | Slice | | Slice |
+| Softmax | √ | √ | √ | √ | | √ | Softmax | Softmax | Softmax |
+| SpaceToBatch | | √ | | | | | | | |
+| SpaceToBatchND | | √ | | | | | SpaceToBatchND | | |
+| SpaceToDepth | | √ | | | | | SpaceToDepth | | SpaceToDepth |
+| SparseToDense | | √ | | | | | SpareToDense | | |
+| Split | √ | √ | √ | √ | | | Split, SplitV | | |
+| Sqrt | | √ | √ | √ | | | Sqrt | | Sqrt |
+| Square | | √ | √ | √ | | | Square | | |
+| SquaredDifference | | √ | | | | | SquaredDifference | | |
+| Squeeze | | √ | √ | √ | | | Squeeze | | Squeeze |
+| StridedSlice | | √ | √ | √ | | | StridedSlice| | |
+| Stack | | √ | | | | | Stack | | |
+| Sub | √ | √ | √ | √ | | √ | Sub | | Sub |
+| Tanh | √ | √ | | | | | Tanh | TanH | |
+| Tile | | √ | | | | | Tile | | Tile |
+| TopK | | √ | √ | √ | | | TopKV2 | | |
+| Transpose | √ | √ | | | | √ | Transpose | Permute | Transpose |
+| Unique | | √ | | | | | Unique | | |
+| Unsqueeze | | √ | √ | √ | | | | | Unsqueeze |
+| Unstack | | √ | | | | | Unstack | | |
+| Where | | √ | | | | | Where | | |
+| ZerosLike | | √ | | | | | ZerosLike | | |
* Clip: only support convert clip(0, 6) to Relu6.
* DEQUANTIZE: only support to convert fp16 to fp32.
diff --git a/lite/docs/source_zh_cn/index.rst b/lite/docs/source_zh_cn/index.rst
index 08270a72e46b955616944d50149024f3765bf318..28634fb696c434f747949830a37d3efb2b0436e4 100644
--- a/lite/docs/source_zh_cn/index.rst
+++ b/lite/docs/source_zh_cn/index.rst
@@ -11,6 +11,5 @@ MindSpore端侧文档
:maxdepth: 1
architecture
- roadmap
operator_list
glossary
\ No newline at end of file
diff --git a/lite/docs/source_zh_cn/operator_list.md b/lite/docs/source_zh_cn/operator_list.md
index 0864989bc46b9182b5b90bb624021a1e756f0647..3384d8baf91b1af92ff4758816790af7b6e241bc 100644
--- a/lite/docs/source_zh_cn/operator_list.md
+++ b/lite/docs/source_zh_cn/operator_list.md
@@ -4,121 +4,108 @@
> √勾选的项为MindSpore Lite所支持的算子。
-| 操作名 | CPU
FP16 | CPU
FP32 | CPU
Int8 | CPU
UInt8 | GPU
FP16 | GPU
FP32 | 算子类别 | 支持的Tensorflow
Lite op | 支持的Caffe
Lite op | 支持的Onnx
Lite op |
-|-----------------------|----------|----------|----------|-----------|----------|----------|------------------|----------|----------|----------|
-| Abs | | √ | √ | √ | | | math_ops | Abs | | Abs |
-| Add | | | | | | √ | | Add | | Add |
-| AddN | | √ | | | | | math_ops | AddN | | |
-| Argmax | | √ | √ | √ | | | array_ops | Argmax | ArgMax | ArgMax |
-| Argmin | | √ | | | | | array_ops | Argmin | | |
-| Asin | | | | | | | | | | Asin |
-| Atan | | | | | | | | | | Atan |
-| AvgPool | | √ | √ | √ | | √ | nn_ops | MeanPooling | Pooling | AveragePool |
-| BatchMatMul | √ | √ | √ | √ | | | math_ops | | | |
-| BatchNorm | | √ | | | | √ | nn_ops | | BatchNorm | BatchNormalization |
-| BatchToSpace | | | | | | | array_ops | BatchToSpace, BatchToSpaceND | | |
-| BatchToSpaceND | | | | | | | | | | |
-| BiasAdd | | √ | | √ | | √ | nn_ops | | | BiasAdd |
-| Broadcast | | √ | | | | | comm_ops | BroadcastTo | | Expand |
-| Cast | | √ | | | | | array_ops | Cast, DEQUANTIZE* | | Cast |
-| Ceil | | √ | | √ | | | math_ops | Ceil | | Ceil |
-| Concat | | √ | √ | √ | | √ | array_ops | Concat | Concat | Concat |
-| Constant | | | | | | | | | | Constant |
-| Conv1dTranspose | | | | √ | | | layer/conv | | | |
-| Conv2d | √ | √ | √ | √ | | √ | layer/conv | Conv2D | Convolution | Conv |
-| Conv2dTranspose | | √ | √ | √ | | √ | layer/conv | DeConv2D | Deconvolution | ConvTranspose |
-| Cos | | √ | √ | √ | | | math_ops | Cos | | Cos |
-| Crop | | | | | | | | | Crop | |
-| DeDepthwiseConv2D | | | | | | | | | Deconvolution| ConvTranspose |
-| DepthToSpace | | | | | | | | DepthToSpace | | DepthToSpace |
-| DepthwiseConv2dNative | √ | √ | √ | √ | | √ | nn_ops | DepthwiseConv2D | Convolution | Convolution |
-| Div | | √ | √ | √ | | √ | math_ops | Div | | Div |
-| Dropout | | | | | | | | | | Dropout |
-| Eltwise | | | | | | | | | Eltwise | |
-| Elu | | | | | | | | Elu | | Elu |
-| Equal | | √ | √ | √ | | | math_ops | Equal | | Equal |
-| Exp | | √ | | | | | math_ops | Exp | | Exp |
-| ExpandDims | | √ | | | | | array_ops | | | |
-| Fill | | √ | | | | | array_ops | Fill | | |
-| Flatten | | | | | | | | | Flatten | |
-| Floor | | √ | √ | √ | | | math_ops | flOOR | | Floor |
-| FloorDiv | | √ | | | | | math_ops | FloorDiv | | |
-| FloorMod | | √ | | | | | nn_ops | FloorMod | | |
-| FullConnection | | √ | | | | | layer/basic | FullyConnected | InnerProduct | |
-| GatherNd | | √ | | | | | array_ops | GatherND | | |
-| GatherV2 | | √ | | | | | array_ops | Gather | | Gather |
-| Greater | | √ | √ | √ | | | math_ops | Greater | | Greater |
-| GreaterEqual | | √ | √ | √ | | | math_ops | GreaterEqual | | |
-| Hswish | | | | | | | | HardSwish | | |
-| L2norm | | | | | | | | L2_NORMALIZATION | | |
-| LeakyReLU | | √ | | | | √ | layer/activation | LeakyRelu | | LeakyRelu |
-| Less | | √ | √ | √ | | | math_ops | Less | | Less |
-| LessEqual | | √ | √ | √ | | | math_ops | LessEqual | | |
-| LocalResponseNorm | | | | | | | | LocalResponseNorm | | Lrn |
-| Log | | √ | √ | √ | | | math_ops | Log | | Log |
-| LogicalAnd | | √ | | | | | math_ops | LogicalAnd | | |
-| LogicalNot | | √ | √ | √ | | | math_ops | LogicalNot | | |
-| LogicalOr | | √ | | | | | math_ops | LogicalOr | | |
-| LSTM | | √ | | | | | layer/lstm | | | |
-| MatMul | √ | √ | √ | √ | | √ | math_ops | | | MatMul |
-| Maximum | | | | | | | math_ops | Maximum | | Max |
-| MaxPool | | √ | √ | √ | | √ | nn_ops | MaxPooling | Pooling | MaxPool |
-| Minimum | | | | | | | math_ops | Minimum | | Min |
-| Mul | | √ | √ | √ | | √ | math_ops | Mul | | Mul |
-| Neg | | | | | | | math_ops | | | Neg |
-| NotEqual | | √ | √ | √ | | | math_ops | NotEqual | | |
-| OneHot | | √ | | | | | layer/basic | OneHot | | |
-| Pack | | √ | | | | | nn_ops | | | |
-| Pad | | √ | √ | √ | | | nn_ops | Pad | | Pad |
-| Pow | | √ | √ | √ | | | math_ops | Pow | Power | Power |
-| PReLU | | √ | √ | √ | | √ | layer/activation | Prelu | PReLU | PRelu |
-| Range | | √ | | | | | layer/basic | Range | | |
-| Rank | | √ | | | | | array_ops | Rank | | |
-| RealDiv | | √ | √ | √ | | √ | math_ops | RealDiv | | |
-| ReduceMax | | √ | √ | √ | | | math_ops | ReduceMax | | ReduceMax |
-| ReduceMean | | √ | √ | √ | | | math_ops | Mean | | ReduceMean |
-| ReduceMin | | √ | √ | √ | | | math_ops | ReduceMin | | ReduceMin |
-| ReduceProd | | √ | √ | √ | | | math_ops | ReduceProd | | |
-| ReduceSum | | √ | √ | √ | | | math_ops | Sum | | ReduceSum |
-| ReLU | | √ | √ | √ | | √ | layer/activation | Relu | ReLU | Relu |
-| ReLU6 | | √ | | | | √ | layer/activation | Relu6 | ReLU6 | Clip* |
-| Reshape | | √ | √ | √ | | √ | array_ops | Reshape | Reshape | Reshape,Flatten |
-| Resize | | | | | | | | ResizeBilinear, NearestNeighbor | Interp | |
-| Reverse | | | | | | | | reverse | | |
-| ReverseSequence | | √ | | | | | array_ops | ReverseSequence | | |
-| Round | | √ | | √ | | | math_ops | Round | | |
-| Rsqrt | | √ | √ | √ | | | math_ops | Rsqrt | | |
-| Scale | | | | | | | | | Scale | |
-| ScatterNd | | √ | | | | | array_ops | ScatterNd | | |
-| Shape | | √ | | √ | | | array_ops | Shape | | Shape |
-| Sigmoid | | √ | √ | √ | | √ | nn_ops | Logistic | Sigmoid | Sigmoid |
-| Sin | | | | | | | | Sin | | Sin |
-| Slice | | √ | √ | √ | | √ | array_ops | Slice | | Slice |
-| Softmax | | √ | √ | √ | | √ | layer/activation | Softmax | Softmax | Softmax |
-| SpaceToBatchND | | √ | | | | | array_ops | SpaceToBatchND | | |
-| SpareToDense | | | | | | | | SpareToDense | | |
-| SpaceToDepth | | √ | | | | | array_ops | SpaceToDepth | | SpaceToDepth |
-| Split | | √ | √ | √ | | | array_ops | Split, SplitV | | |
-| Sqrt | | √ | √ | √ | | | math_ops | Sqrt | | Sqrt |
-| Square | | √ | √ | √ | | | math_ops | Square | | |
-| SquaredDifference | | | | | | | | SquaredDifference | | |
-| Squeeze | | √ | √ | √ | | | array_ops | Squeeze | | Squeeze |
-| StridedSlice | | √ | √ | √ | | | array_ops | StridedSlice | | |
-| Stack | | | | | | | | Stack | | |
-| Sub | | √ | √ | √ | | √ | math_ops | Sub | | Sub |
-| Tan | | | | | | | | | | Tan |
-| Tanh | | √ | | | | | layer/activation | Tanh | TanH | |
-| TensorAdd | | √ | √ | √ | | √ | math_ops | | | |
-| Tile | | √ | | | | | array_ops | Tile | | Tile |
-| TopK | | √ | √ | √ | | | nn_ops | TopKV2 | | |
-| Transpose | | √ | √ | √ | | √ | array_ops | Transpose | Permute | Transpose |
-| Unique | | | | | | | | Unique | | |
-| Unpack | | √ | | | | | nn_ops | | | |
-| Unsample | | | | | | | | | | Unsample |
-| Unsqueeze | | | | | | | | | | Unsqueeze |
-| Unstack | | | | | | | | Unstack | | |
-| Where | | | | | | | | Where | | |
-| ZerosLike | | √ | | | | | array_ops | ZerosLike | | |
+| 操作名 | CPU
FP16 | CPU
FP32 | CPU
Int8 | CPU
UInt8 | GPU
FP16 | GPU
FP32 | 支持的Tensorflow
Lite op | 支持的Caffe
Lite op | 支持的Onnx
Lite op |
+|-----------------------|----------|----------|----------|-----------|----------|-------------------|----------|----------|---------|
+| Abs | | √ | √ | √ | | | Abs | | Abs |
+| Add | √ | √ | √ | √ | | √ | Add | | Add |
+| AddN | | √ | | | | | AddN | | |
+| Argmax | | √ | √ | √ | | | Argmax | ArgMax | ArgMax |
+| Argmin | | √ | √ | √ | | | Argmin | | |
+| AvgPool | √ | √ | √ | √ | | √ | MeanPooling| Pooling | AveragePool |
+| BatchNorm | √ | √ | √ | √ | | √ | | BatchNorm | BatchNormalization |
+| BatchToSpace | | √ | √ | √ | | | BatchToSpace, BatchToSpaceND | | |
+| BiasAdd | | √ | √ | √ | | √ | | | BiasAdd |
+| Broadcast | | √ | | | | | BroadcastTo | | Expand |
+| Cast | √ | √ | | √ | | | Cast, DEQUANTIZE* | | Cast |
+| Ceil | | √ | √ | √ | | | Ceil | | Ceil |
+| Concat | √ | √ | √ | √ | √ | √ | Concat | Concat | Concat |
+| Conv2d | √ | √ | √ | √ | √ | √ | Conv2D | Convolution | Conv |
+| Conv2dTranspose | √ | √ | √ | √ | √ | √ | DeConv2D | Deconvolution | ConvTranspose |
+| Cos | | √ | √ | √ | | | Cos | | Cos |
+| Crop | | √ | √ | √ | | | | Crop | |
+| DeDepthwiseConv2D | | √ | √ | √ | | | | Deconvolution| ConvTranspose |
+| DepthToSpace | | √ | √ | √ | | | DepthToSpace| | DepthToSpace |
+| DepthwiseConv2dNative | √ | √ | √ | √ | √ | √ | DepthwiseConv2D | Convolution | Convolution |
+| Div | √ | √ | √ | √ | | √ | Div, RealDiv | | Div |
+| Eltwise | √ | √ | | | | | | Eltwise | |
+| Elu | | √ | | | | | Elu | | Elu |
+| Equal | √ | √ | √ | √ | | | Equal | | Equal |
+| Exp | | √ | | | | | Exp | | Exp |
+| ExpandDims | | √ | | | | | | | |
+| Fill | | √ | | | | | Fill | | |
+| Flatten | | √ | | | | | | Flatten | |
+| Floor | | √ | √ | √ | | | flOOR | | Floor |
+| FloorDiv | √ | √ | | | | | FloorDiv | | |
+| FloorMod | √ | √ | | | | | FloorMod | | |
+| FullConnection | | √ | √ | √ | | | FullyConnected | InnerProduct | |
+| GatherNd | | √ | √ | √ | | | GatherND | | |
+| GatherV2 | | √ | √ | √ | | | Gather | | Gather |
+| Greater | √ | √ | √ | √ | | | Greater | | Greater |
+| GreaterEqual | √ | √ | √ | √ | | | GreaterEqual| | |
+| Hswish | √ | √ | √ | √ | | | HardSwish | | |
+| LeakyReLU | √ | √ | | | | √ | LeakyRelu | | LeakyRelu |
+| Less | √ | √ | √ | √ | | | Less | | Less |
+| LessEqual | √ | √ | √ | √ | | | LessEqual | | |
+| LRN | | √ | | | | | LocalResponseNorm | | Lrn |
+| Log | | √ | √ | √ | | | Log | | Log |
+| LogicalAnd | √ | √ | | | | | LogicalAnd | | |
+| LogicalNot | | √ | √ | √ | | | LogicalNot | | |
+| LogicalOr | √ | √ | | | | | LogicalOr | | |
+| LSTM | | √ | | | | | | | |
+| MatMul | | √ | √ | √ | √ | √ | | | MatMul |
+| Maximum | √ | √ | | | | | Maximum | | Max |
+| MaxPool | √ | √ | √ | √ | | √ | MaxPooling | Pooling | MaxPool |
+| Minimum | √ | √ | | | | | Minimum | | Min |
+| Mul | √ | √ | √ | √ | | √ | Mul | | Mul |
+| NotEqual | √ | √ | √ | √ | | | NotEqual | | |
+| OneHot | | √ | | | | | OneHot | | |
+| Pad | | √ | √ | √ | | | Pad | | Pad |
+| Pow | | √ | √ | √ | | | Pow | Power | Power |
+| PReLU | | √ | | | | √ | | PReLU | |
+| Range | | √ | | | | | Range | | |
+| Rank | | √ | | | | | Rank | | |
+| ReduceMax | √ | √ | √ | √ | | | ReduceMax | | ReduceMax |
+| ReduceMean | √ | √ | √ | √ | | | Mean | | ReduceMean |
+| ReduceMin | √ | √ | √ | √ | | | ReduceMin | | ReduceMin |
+| ReduceProd | √ | √ | √ | √ | | | ReduceProd | | |
+| ReduceSum | √ | √ | √ | √ | | | Sum | | ReduceSum |
+| ReduceSumSquare | √ | √ | √ | √ | | | | | |
+| ReLU | √ | √ | √ | √ | | √ | Relu | ReLU | Relu |
+| ReLU6 | √ | √ | √ | √ | | √ | Relu6 | ReLU6 | Clip* |
+| Reshape | √ | √ | √ | √ | | √ | Reshape | Reshape | Reshape,Flatten |
+| Resize | | √ | √ | √ | | | ResizeBilinear, NearestNeighbor | Interp | |
+| Reverse | | √ | | | | | reverse | | |
+| ReverseSequence | | √ | | | | | ReverseSequence | | |
+| Round | | √ | √ | √ | | | Round | | |
+| Rsqrt | | √ | √ | √ | | | Rsqrt | | |
+| Scale | | √ | | | | | | Scale | |
+| ScatterNd | | √ | | | | | ScatterNd | | |
+| Shape | | √ | | | | | Shape | | Shape |
+| Sigmoid | √ | √ | √ | √ | | √ | Logistic | Sigmoid | Sigmoid |
+| Sin | | √ | √ | √ | | | Sin | | Sin |
+| Slice | | √ | √ | √ | √ | √ | Slice | | Slice |
+| Softmax | √ | √ | √ | √ | | √ | Softmax | Softmax | Softmax |
+| SpaceToBatch | | √ | | | | | | | |
+| SpaceToBatchND | | √ | | | | | SpaceToBatchND | | |
+| SpaceToDepth | | √ | | | | | SpaceToDepth | | SpaceToDepth |
+| SparseToDense | | √ | | | | | SpareToDense | | |
+| Split | √ | √ | √ | √ | | | Split, SplitV | | |
+| Sqrt | | √ | √ | √ | | | Sqrt | | Sqrt |
+| Square | | √ | √ | √ | | | Square | | |
+| SquaredDifference | | √ | | | | | SquaredDifference | | |
+| Squeeze | | √ | √ | √ | | | Squeeze | | Squeeze |
+| StridedSlice | | √ | √ | √ | | | StridedSlice| | |
+| Stack | | √ | | | | | Stack | | |
+| Sub | √ | √ | √ | √ | | √ | Sub | | Sub |
+| Tanh | √ | √ | | | | | Tanh | TanH | |
+| Tile | | √ | | | | | Tile | | Tile |
+| TopK | | √ | √ | √ | | | TopKV2 | | |
+| Transpose | √ | √ | | | | √ | Transpose | Permute | Transpose |
+| Unique | | √ | | | | | Unique | | |
+| Unsqueeze | | √ | √ | √ | | | | | Unsqueeze |
+| Unstack | | √ | | | | | Unstack | | |
+| Where | | √ | | | | | Where | | |
+| ZerosLike | | √ | | | | | ZerosLike | | |
-* Clip: only support convert clip(0, 6) to Relu6.
-* DEQUANTIZE: only support to convert fp16 to fp32.
+* Clip: 仅支持将clip(0, 6)转换为Relu6.
+* DEQUANTIZE: 仅支持将fp16转换为fp32.
diff --git a/lite/docs/source_zh_cn/roadmap.md b/lite/docs/source_zh_cn/roadmap.md
deleted file mode 100644
index 6bafce4c91194936f9e2715a5896819b72ee99a8..0000000000000000000000000000000000000000
--- a/lite/docs/source_zh_cn/roadmap.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# RoadMap
-
-
-
-1. 增加更多的FP16、INT8和UINT8 CPU算子;
-2. 增加更多的openCL、openGL、vulkan和metal GPU算子;
-3. 增加控制流算子支持;
-4. 增加NPU支持;
-5. 增加部署在IoT设备的推理框架;
-6. 增加图像分割、文字识别、人脸检测等预制模型;
-7. 增加Lite的图像分割、文字识别、人脸检测等预置样例;
-8. 增加Micro的样例;
-9. 端侧训练支持;
-10. pipeline数据处理丰富;
-11. 模型转换工具支持windows和MAC。
\ No newline at end of file
diff --git a/lite/tutorials/source_en/deploy.md b/lite/tutorials/source_en/compile.md
similarity index 86%
rename from lite/tutorials/source_en/deploy.md
rename to lite/tutorials/source_en/compile.md
index 350654ea725fc9a286be6f113d007e4b5ce62ff6..9f7ae53c96ac66900cc3a590cd2cfb224f2ad3f7 100644
--- a/lite/tutorials/source_en/deploy.md
+++ b/lite/tutorials/source_en/compile.md
@@ -1,8 +1,8 @@
-# Deploy
+# Compile
-- [Deployment](#deployment)
+- [compilation](#compilation)
- [Environment Requirements](#environment-requirements)
- [Compilation Options](#compilation-options)
- [Output Description](#output-description)
@@ -10,7 +10,7 @@
-
+
This document describes how to quickly install MindSpore Lite on the Ubuntu system.
@@ -57,7 +57,7 @@ After the compilation is complete, go to the `mindspore/output` directory of the
> version: version of the output, consistent with that of the MindSpore.
>
-> function: function of the output. `convert` indicates the output of the conversion tool and `runtime` indicates the output of the inference framework.
+> function: function of the output. `converter` indicates the output of the conversion tool and `runtime` indicates the output of the inference framework.
>
> OS: OS on which the output will be deployed.
@@ -81,9 +81,11 @@ Generally, the compiled output files include the following types. The architectu
| third_party | Header file and library of the third-party library | Yes | Yes |
Take the 0.7.0-beta version and CPU as an example. The contents of `third party` and `lib` vary depending on the architecture as follows:
-- `mindspore-lite-0.7.0-converter-ubuntu`: include `protobuf` (Protobuf dynamic library).
-- `mindspore-lite-0.7.0-runtime-x86-cpu`: include `flatbuffers` (FlatBuffers header file).
-TODO: Add document content.
+- `mindspore-lite-0.7.0-converter-ubuntu`: `third party`include `protobuf` (Protobuf dynamic library).
+- `mindspore-lite-0.7.0-runtime-x86-cpu`: `third party`include `flatbuffers` (FlatBuffers header file), `lib`include`libmindspore-lite.so`(Dynamic library of MindSpore Lite inference framework).
+- `mindspore-lite-0.7.0-runtime-arm64-cpu`: `third party`include `flatbuffers` (FlatBuffers header file), `lib`include`libmindspore-lite.so`(Dynamic library of MindSpore Lite inference framework) and `liboptimize.so`(Dynamic library of MindSpore Lite advanced operators).
+
+> `liboptimize.so` only exits in runtime-arm64 outputs, and only can be used in the CPU which supports armv8.2 and fp16.
> Before running the tools in the `converter`, `benchmark`, or `time_profiler` directory, you need to configure environment variables and set the paths of the dynamic libraries of MindSpore Lite and Protobuf to the paths of the system dynamic libraries. The following uses the 0.7.0-beta version as an example: `export LD_LIBRARY_PATH=./mindspore-lite-0.7.0/lib:./mindspore-lite-0.7.0/third_party/protobuf/lib:${LD_LIBRARY_PATH}`.
diff --git a/lite/tutorials/source_en/images/lite_quick_start_app_result.jpg b/lite/tutorials/source_en/images/lite_quick_start_app_result.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9287aad111992c39145c70f6a473818e31402bc7
Binary files /dev/null and b/lite/tutorials/source_en/images/lite_quick_start_app_result.jpg differ
diff --git a/lite/tutorials/source_en/images/lite_quick_start_home.png b/lite/tutorials/source_en/images/lite_quick_start_home.png
new file mode 100644
index 0000000000000000000000000000000000000000..c48cf581b33afbc15dbf27be495215b999e1be60
Binary files /dev/null and b/lite/tutorials/source_en/images/lite_quick_start_home.png differ
diff --git a/lite/tutorials/source_en/images/lite_quick_start_project_structure.png b/lite/tutorials/source_en/images/lite_quick_start_project_structure.png
new file mode 100644
index 0000000000000000000000000000000000000000..ade37a61ef97a479401240215e302011c014824c
Binary files /dev/null and b/lite/tutorials/source_en/images/lite_quick_start_project_structure.png differ
diff --git a/lite/tutorials/source_en/images/lite_quick_start_run_app.PNG b/lite/tutorials/source_en/images/lite_quick_start_run_app.PNG
new file mode 100644
index 0000000000000000000000000000000000000000..2557b6293de5b3d7fefe7f6e58b57c03deabb55d
Binary files /dev/null and b/lite/tutorials/source_en/images/lite_quick_start_run_app.PNG differ
diff --git a/lite/tutorials/source_en/images/lite_quick_start_sdk.png b/lite/tutorials/source_en/images/lite_quick_start_sdk.png
new file mode 100644
index 0000000000000000000000000000000000000000..1fcb8acabc9ba9d289efbe7e82ee5e2da8bfe073
Binary files /dev/null and b/lite/tutorials/source_en/images/lite_quick_start_sdk.png differ
diff --git a/lite/tutorials/source_en/index.rst b/lite/tutorials/source_en/index.rst
index ac48c19eeb0dc9ee7e406a857c3f3bd7d89a31f1..569f33def4647002337f602cf29a5341f136a05f 100644
--- a/lite/tutorials/source_en/index.rst
+++ b/lite/tutorials/source_en/index.rst
@@ -11,8 +11,8 @@ MindSpore Lite Tutorials
:maxdepth: 1
:caption: Quick Start
- deploy
- quick_start/quick_start_lite
+ compile
+ quick_start/quick_start
.. toctree::
:glob:
@@ -20,4 +20,6 @@ MindSpore Lite Tutorials
:caption: Use
use/converter_tool
- use/tools
+ use/runtime
+ use/benchmark_tool
+ use/timeprofiler_tool
diff --git a/lite/tutorials/source_en/quick_start/quick_start.md b/lite/tutorials/source_en/quick_start/quick_start.md
new file mode 100644
index 0000000000000000000000000000000000000000..970385a74446206461d1bf793b7c6c9111965e1f
--- /dev/null
+++ b/lite/tutorials/source_en/quick_start/quick_start.md
@@ -0,0 +1,336 @@
+# Quick Start (Lite)
+
+
+
+- [Quick Start (Lite)](#quick-start-lite)
+ - [Overview](#overview)
+ - [Selecting a Model](#selecting-a-model)
+ - [Converting a Model](#converting-a-model)
+ - [Deploying an Application](#deploying-an-application)
+ - [Running Dependencies](#running-dependencies)
+ - [Building and Running](#building-and-running)
+ - [Detailed Description of the Sample Program](#detailed-description-of-the-sample-program)
+ - [Sample Program Structure](#sample-program-structure)
+ - [Configuring MindSpore Lite Dependencies](#configuring-mindspore-lite-dependencies)
+ - [Downloading and Deploying a Model File](#downloading-and-deploying-a-model-file)
+ - [Compiling On-Device Inference Code](#compiling-on-device-inference-code)
+
+
+
+## Overview
+
+It is recommended that you start from the image classification demo on the Android device to understand how to build the MindSpore Lite application project, configure dependencies, and use related APIs.
+
+This tutorial demonstrates the on-device deployment process based on the image classification sample program on the Android device provided by the MindSpore team.
+1. Select an image classification model.
+2. Convert the model into a MindSpore Lite model.
+3. Use the MindSpore Lite inference model on the device. The following describes how to use the MindSpore Lite C++ APIs (Android JNIs) and MindSpore Lite image classification models to perform on-device inference, classify the content captured by a device camera, and display the most possible classification result on the application's image preview screen.
+
+> Click to find [Android image classification models](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite) and [sample code](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/lite/image_classification).
+
+## Selecting a Model
+
+The MindSpore team provides a series of preset device models that you can use in your application.
+Click [here](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms) to download image classification models in MindSpore ModelZoo.
+In addition, you can use the preset model to perform migration learning to implement your image classification tasks. For details, see [Saving and Loading Model Parameters](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#id6).
+
+## Converting a Model
+
+After you retrain a model provided by MindSpore, export the model in the [.mindir format](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#mindir). Use the MindSpore Lite [model conversion tool](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/converter_tool.html) to convert the .mindir model to a .ms model.
+
+Take the MindSpore MobileNetV2 model as an example. Execute the following script to convert a model into a MindSpore Lite model for on-device inference.
+```bash
+./converter_lite --fmk=MS --modelFile=mobilenet_v2.mindir --outputFile=mobilenet_v2.ms
+```
+
+## Deploying an Application
+
+The following section describes how to build and execute an on-device image classification task on MindSpore Lite.
+
+### Running Dependencies
+
+- Android Studio 3.2 or later (Android 4.0 or later is recommended.)
+- Native development kit (NDK) 21.3
+- CMake
+- Android software development kit (SDK) 26 or later
+- OpenCV 4.0.0 or later (included in the sample code)
+
+### Building and Running
+
+1. Load the sample source code to Android Studio and install the corresponding SDK. (After the SDK version is specified, Android Studio automatically installs the SDK.)
+
+ 
+
+ Start Android Studio, click `File > Settings > System Settings > Android SDK`, and select the corresponding SDK. As shown in the following figure, select an SDK and click `OK`. Android Studio automatically installs the SDK.
+
+ 
+
+ (Optional) If an NDK version issue occurs during the installation, manually download the corresponding [NDK version](https://developer.android.com/ndk/downloads) (the version used in the sample code is 21.3). Specify the SDK location in `Android NDK location` of `Project Structure`.
+
+ 
+
+2. Connect to an Android device and runs the image classification application.
+
+ Connect to the Android device through a USB cable for debugging. Click `Run 'app'` to run the sample project on your device.
+
+ 
+
+ For details about how to connect the Android Studio to a device for debugging, see
diff --git a/lite/tutorials/source_en/use/benchmark_tool.md b/lite/tutorials/source_en/use/benchmark_tool.md
index e96f6d25948fe288b48379577abd27beb6916e62..78cd34120988addfd60b85883f7f400681160319 100644
--- a/lite/tutorials/source_en/use/benchmark_tool.md
+++ b/lite/tutorials/source_en/use/benchmark_tool.md
@@ -1,3 +1,97 @@
# Benchmark Tool
+
+
+- [Benchmark Tool](#benchmark-tool)
+ - [Overview](#overview)
+ - [Environment Preparation](#environment-preparation)
+ - [Parameter Description](#parameter-description)
+ - [Example](#example)
+ - [Performance Test](#performance-test)
+ - [Accuracy Test](#accuracy-test)
+
+
+
+
+## Overview
+
+The Benchmark tool is used to perform benchmark testing on a MindSpore Lite model and is implemented using the C++ language. It can not only perform quantitative analysis (performance) on the forward inference execution duration of a MindSpore Lite model, but also perform comparative error analysis (accuracy) based on the output of the specified model.
+
+## Environment Preparation
+
+To use the Benchmark tool, you need to prepare the environment as follows:
+
+- Compilation: Install compilation dependencies and perform compilation. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/master/deploy.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/master/deploy.html#id5) in the compilation document.
+
+- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id4) in the compilation document.
+
+## Parameter Description
+
+The command used for benchmark testing based on the compiled Benchmark tool is as follows:
+
+```bash
+./benchmark --modelPath=
1: large core
0: not bound |
+| `--device=
AwareTraining: perceptual quantization | - |
+| `--quantType=
AwareTraining: perceptual quantization | - |
+|`--inputInferenceType=
+
+## Overview
+
+The TimeProfiler tool can be used to analyze the time consumption of forward inference at the network layer of a MindSpore Lite model. The analysis is implemented using the C++ language.
+
+## Environment Preparation
+
+To use the TimeProfiler tool, you need to prepare the environment as follows:
+
+- Compilation: Install compilation dependencies and perform compilation. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements](https://www.mindspore.cn/lite/docs/en/master/compile.html#id2) and [Compilation Example](https://www.mindspore.cn/lite/docs/en/master/compile.html#id5) in the compilation document.
+
+- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html#id4) in the compilation document.
+
+## Parameter Description
+
+The command used for analyzing the time consumption of forward inference at the network layer based on the compiled TimeProfiler tool is as follows:
+
+```bash
+./timeprofiler --modelPath=
1: large core
0: not bound |
+| `--inDataPath=
+
+本章节介绍如何在Ubuntu系统上快速编译出MindSpore Lite,其包含的模块如下:
+
+| 模块 | 支持平台 | 说明 |
+| --- | ---- | ---- |
+| converter | Linux、Windows | 模型转换工具 |
+| runtime | Linux、Android | 模型推理框架 |
+| benchmark | Linux、Android | 基准测试工具 |
+| time_profiler | Linux、Android | 性能分析工具 |
+
+## Linux环境编译
+
+### 环境要求
+
+- 系统环境:Linux x86_64,推荐使用Ubuntu 18.04.02LTS
+
+- runtime、benchmark、time_profiler编译依赖
+ - [CMake](https://cmake.org/download/) >= 3.14.1
+ - [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
+ - [Android_NDK](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip) >= r20
+ - [Git](https://git-scm.com/downloads) >= 2.28.0
+
+- converter编译依赖
+ - [CMake](https://cmake.org/download/) >= 3.14.1
+ - [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
+ - [Android_NDK](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip) >= r20
+ - [Git](https://git-scm.com/downloads) >= 2.28.0
+ - [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
+ - [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
+ - [LibreSSL](http://www.libressl.org/) >= 3.1.3
+ - [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
+ - [Libevent](https://libevent.org) >= 2.0
+ - [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
+ - [OpenSSL](https://www.openssl.org/) >= 1.1.1
+
+> 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
+
+### 编译选项
+
+MindSpore Lite提供编译脚本`build.sh`用于一键式编译,位于MindSpore根目录下,该脚本可用于MindSpore训练及推理的编译。下面对MindSpore Lite的编译选项进行说明。
+
+| 选项 | 参数说明 | 取值范围 | 是否必选 |
+| -------- | ----- | ---- | ---- |
+| **-I** | **选择适用架构,编译MindSpore Lite此选项必选** | **arm64、arm32、x86_64** | **是** |
+| -d | 设置该参数,则编译Debug版本,否则编译Release版本 | 无 | 否 |
+| -i | 设置该参数,则进行增量编译,否则进行全量编译 | 无 | 否 |
+| -j[n] | 设定编译时所用的线程数,否则默认设定为8线程 | Integer | 否 |
+| -e | 选择除CPU之外的其他内置算子类型,仅在ARM架构下适用,当前仅支持GPU | gpu | 否 |
+| -h | 显示编译帮助信息 | 无 | 否 |
+
+> 在`-I`参数变动时,如`-I x86_64`变为`-I arm64`,添加`-i`参数进行增量编译不生效。
+
+### 编译示例
+
+首先,在进行编译之前,需从MindSpore代码仓下载源码。
+
+```bash
+git clone https://gitee.com/mindspore/mindspore.git
+```
+
+然后,在源码根目录下执行如下命令,可编译不同版本的MindSpore Lite。
+
+- 编译x86_64架构Debug版本。
+ ```bash
+ bash build.sh -I x86_64 -d
+ ```
+
+- 编译x86_64架构Release版本,同时设定线程数。
+ ```bash
+ bash build.sh -I x86_64 -j32
+ ```
+
+- 增量编译ARM64架构Release版本,同时设定线程数。
+ ```bash
+ bash build.sh -I arm64 -i -j32
+ ```
+
+- 编译ARM64架构Release版本,同时编译内置的GPU算子。
+ ```bash
+ bash build.sh -I arm64 -e gpu
+ ```
+
+### 编译输出
+
+编译完成后,进入`mindspore/output/`目录,可查看编译后生成的文件。文件分为两部分:
+- `mindspore-lite-{version}-converter-{os}.tar.gz`:包含模型转换工具converter。
+- `mindspore-lite-{version}-runtime-{os}-{device}.tar.gz`:包含模型推理框架runtime、基准测试工具benchmark和性能分析工具time_profiler。
+
+> version:输出件版本号,与所编译的分支代码对应的版本一致。
+>
+> device:当前分为cpu(内置CPU算子)和gpu(内置CPU和GPU算子)。
+>
+> os:输出件应部署的操作系统。
+
+执行解压缩命令,获取编译后的输出件:
+
+```bash
+tar -xvf mindspore-lite-{version}-converter-{os}.tar.gz
+tar -xvf mindspore-lite-{version}-runtime-{os}-{device}.tar.gz
+```
+
+#### 模型转换工具converter目录结构说明
+
+转换工具仅在`-I x86_64`编译选项下获得,内容包括以下几部分:
+
+```
+|
+├── mindspore-lite-{version}-converter-{os}
+│ └── converter # 模型转换工具
+│ └── third_party # 第三方库头文件和库
+│ ├── protobuf # Protobuf的动态库
+
+```
+
+#### 模型推理框架runtime及其他工具目录结构说明
+
+推理框架可在`-I x86_64`、`-I arm64`和`-I arm32`编译选项下获得,内容包括以下几部分:
+
+- 当编译选项为`-I x86_64`时:
+ ```
+ |
+ ├── mindspore-lite-{version}-runtime-x86-cpu
+ │ └── benchmark # 基准测试工具
+ │ └── lib # 推理框架动态库
+ │ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
+ │ └── third_party # 第三方库头文件和库
+ │ ├── flatbuffers # FlatBuffers头文件
+
+ ```
+
+- 当编译选项为`-I arm64`时:
+ ```
+ |
+ ├── mindspore-lite-{version}-runtime-arm64-cpu
+ │ └── benchmark # 基准测试工具
+ │ └── lib # 推理框架动态库
+ │ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
+ │ ├── liboptimize.so # MindSpore Lite算子性能优化库
+ │ └── third_party # 第三方库头文件和库
+ │ ├── flatbuffers # FlatBuffers头文件
+ │ └── include # 推理框架头文件
+ │ └── time_profiler # 模型网络层耗时分析工具
+
+ ```
+
+- 当编译选项为`-I arm32`时:
+ ```
+ |
+ ├── mindspore-lite-{version}-runtime-arm64-cpu
+ │ └── benchmark # 基准测试工具
+ │ └── lib # 推理框架动态库
+ │ ├── libmindspore-lite.so # MindSpore Lite推理框架的动态库
+ │ └── third_party # 第三方库头文件和库
+ │ ├── flatbuffers # FlatBuffers头文件
+ │ └── include # 推理框架头文件
+ │ └── time_profiler # 模型网络层耗时分析工具
+
+ ```
+
+> 1. `liboptimize.so`仅在runtime-arm64的输出包中存在,仅在ARMv8.2和支持fp16特性的CPU上使用。
+> 2. 编译ARM64默认可获得arm64-cpu的推理框架输出件,若添加`-e gpu`则获得arm64-gpu的推理框架输出件,此时包名为`mindspore-lite-{version}-runtime-arm64-gpu.tar.gz`,编译ARM32同理。
+> 3. 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本下编译CPU为例:配置converter:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0-converter-ubuntu/third_party/protobuf/lib`;配置benchmark和time_profiler:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0-runtime-x86-cpu/lib`
+
+
+## Windows环境编译
+
+### 环境要求
+
+- 支持的编译环境为:Windows 10,64位。
+
+- 编译依赖
+ - [CMake](https://cmake.org/download/) >= 3.14.1
+ - [MinGW GCC](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z/download) >= 7.3.0
+ - [Python](https://www.python.org/) >= 3.7.5
+ - [Git](https://git-scm.com/downloads) >= 2.28.0
+
+> 编译脚本中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
+
+### 编译选项
+
+MindSpore Lite的编译选项如下。
+
+| 参数 | 参数说明 | 是否必选 |
+| -------- | ----- | ---- |
+| **lite** | **设置该参数,则对Mindspore Lite工程进行编译** | **是** |
+| [n] | 设定编译时所用的线程数,否则默认设定为6线程 | 否 |
+
+### 编译示例
+
+首先,使用git工具从MindSpore代码仓下载源码。
+
+```bash
+git clone https://gitee.com/mindspore/mindspore.git
+```
+
+然后,使用cmd工具在源码根目录下,执行如下命令即可编译MindSpore Lite。
+
+- 以默认线程数(6线程)编译Windows版本。
+ ```bash
+ call build.bat lite
+ ```
+- 以指定线程数8编译Windows版本。
+ ```bash
+ call build.bat lite 8
+ ```
+
+编译完成之后,进入`mindspore/output/`目录,解压后即可获取输出件`mindspore-lite-0.7.0-converter-win-cpu.zip`,其中含有转换工具可执行文件。
diff --git a/lite/tutorials/source_zh_cn/deploy.md b/lite/tutorials/source_zh_cn/deploy.md
deleted file mode 100644
index 2b6177026eba1ddf58b772aec5e4771b1e38dac5..0000000000000000000000000000000000000000
--- a/lite/tutorials/source_zh_cn/deploy.md
+++ /dev/null
@@ -1,187 +0,0 @@
-# 部署
-
-
-
-- [部署](#部署)
- - [Linux环境部署](#linux环境部署)
- - [环境要求](#环境要求)
- - [编译选项](#编译选项)
- - [输出件说明](#输出件说明)
- - [编译示例](#编译示例)
- - [Windows环境部署](#windows环境部署)
- - [环境要求](#环境要求-1)
- - [编译选项](#编译选项-1)
- - [输出件说明](#输出件说明-1)
- - [编译示例](#编译示例-1)
-
-
-
-
-
-本文档介绍如何在Ubuntu和Windows系统上快速安装MindSpore Lite。
-
-## Linux环境部署
-
-### 环境要求
-
-- 编译环境仅支持x86_64版本的Linux:推荐使用Ubuntu 18.04.02LTS
-
-- 编译依赖(基本项)
- - [CMake](https://cmake.org/download/) >= 3.14.1
- - [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- - [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
-
- > - 仅在编译ARM版本时需要安装`Android_NDK`,编译x86_64版本可跳过此项。
- > - 如果安装并使用`Android_NDK`,需配置环境变量,命令参考:`export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`。
-
-- 编译依赖(MindSpore Lite模型转换工具所需附加项,仅编译x86_64版本时需要)
- - [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- - [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
- - [LibreSSL](http://www.libressl.org/) >= 3.1.3
- - [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- - [Libevent](https://libevent.org) >= 2.0
- - [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- - [OpenSSL](https://www.openssl.org/) >= 1.1.1
-
-
-### 编译选项
-
-MindSpore Lite提供多种编译方式,用户可根据需要选择不同的编译选项。
-
-| 参数 | 参数说明 | 取值范围 | 是否必选 |
-| -------- | ----- | ---- | ---- |
-| -d | 设置该参数,则编译Debug版本,否则编译Release版本 | - | 否 |
-| -i | 设置该参数,则进行增量编译,否则进行全量编译 | - | 否 |
-| -j[n] | 设定编译时所用的线程数,否则默认设定为8线程 | - | 否 |
-| -I | 选择适用架构 | arm64、arm32、x86_64 | 是 |
-| -e | 在ARM架构下,选择后端算子,设置`gpu`参数,会同时编译框架内置的GPU算子 | gpu | 否 |
-| -h | 设置该参数,显示编译帮助信息 | - | 否 |
-
-> 在`-I`参数变动时,即切换适用架构时,无法使用`-i`参数进行增量编译。
-
-### 输出件说明
-
-编译完成后,进入源码的`mindspore/output`目录,可查看编译后生成的文件,命名为`mindspore-lite-{version}-{function}-{OS}.tar.gz`。解压后,即可获得编译后的工具包,名称为`mindspore-lite-{version}-{function}-{OS}`。
-
-> version:输出件版本,与所编译的MindSpore版本一致。
->
-> function:输出件功能,`convert`表示为转换工具的输出件,`runtime`表示为推理框架的输出件。
->
-> OS:输出件应部署的操作系统。
-
-```bash
-tar -xvf mindspore-lite-{version}-{function}-{OS}.tar.gz
-```
-编译x86可获得转换工具`converter`与推理框架`runtime`功能的输出件,编译ARM仅能获得推理框架`runtime`。
-
-输出件中包含以下几类子项,功能不同所含内容也会有所区别。
-
-> 编译ARM64默认可获得`arm64-cpu`的推理框架输出件,若添加`-e gpu`则获得`arm64-gpu`的推理框架输出件,编译ARM32同理。
-
-| 目录 | 说明 | converter | runtime |
-| --- | --- | --- | --- |
-| include | 推理框架头文件 | 无 | 有 |
-| lib | 推理框架动态库 | 无 | 有 |
-| benchmark | 基准测试工具 | 无 | 有 |
-| time_profiler | 模型网络层耗时分析工具 | 无 | 有 |
-| converter | 模型转换工具 | 有 | 无 |
-| third_party | 第三方库头文件和库 | 有 | 有 |
-
-以0.7.0-beta版本,CPU编译为例,不同包名下,`third party`与`lib`的内容不同:
-
-- `mindspore-lite-0.7.0-converter-ubuntu`:包含`protobuf`(Protobuf的动态库)。
-- `mindspore-lite-0.7.0-runtime-x86-cpu`:`third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)。
-- `mindspore-lite-0.7.0-runtime-arm64-cpu`:`third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)和`liboptimize.so`。
-TODO:补全文件内容
-
-> 运行converter、benchmark或time_profiler目录下的工具前,都需配置环境变量,将MindSpore Lite和Protobuf的动态库所在的路径配置到系统搜索动态库的路径中。以0.7.0-beta版本为例:`export LD_LIBRARY_PATH=./mindspore-lite-0.7.0/lib:./mindspore-lite-0.7.0/third_party/protobuf/lib:${LD_LIBRARY_PATH}`。
-
-### 编译示例
-
-首先,从MindSpore代码仓下载源码。
-
-```bash
-git clone https://gitee.com/mindspore/mindspore.git
-```
-
-然后,在源码根目录下,执行如下命令,可编译不同版本的MindSpore Lite。
-
-- 编译x86_64架构Debug版本。
- ```bash
- bash build.sh -I x86_64 -d
- ```
-
-- 编译x86_64架构Release版本,同时设定线程数。
- ```bash
- bash build.sh -I x86_64 -j32
- ```
-
-- 增量编译ARM64架构Release版本,同时设定线程数。
- ```bash
- bash build.sh -I arm64 -i -j32
- ```
-
-- 编译ARM64架构Release版本,同时编译内置的GPU算子。
- ```bash
- bash build.sh -I arm64 -e gpu
- ```
-
-> `build.sh`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
-
-以0.7.0-beta版本为例,x86_64架构Release版本编译完成之后,进入`mindspore/output`目录,执行如下解压缩命令,即可获取输出件`include`、`lib`、`benchmark`、`time_profiler`、`converter`和`third_party`。
-
-```bash
-tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
-tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
-```
-
-## Windows环境部署
-
-### 环境要求
-
-- 编译环境仅支持32位或64位Windows系统
-
-- 编译依赖(基本项)
- - [CMake](https://cmake.org/download/) >= 3.14.1
- - [MinGW GCC](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z/download) >= 7.3.0
- - [Python](https://www.python.org/) >= 3.7.5
- - [Git](https://git-scm.com/downloads) >= 2.28.0
-
-### 编译选项
-
-MindSpore Lite的编译选项如下。
-
-| 参数 | 参数说明 | 取值范围 | 是否必选 |
-| -------- | ----- | ---- | ---- |
-| lite | 设置该参数,则对Mindspore Lite工程进行编译,否则对Mindspore工程进行编译 | - | 是 |
-| [n] | 设定编译时所用的线程数,否则默认设定为6线程 | - | 否 |
-
-### 输出件说明
-
-编译完成后,进入源码的`mindspore/output/`目录,可查看编译后生成的文件,命名为`mindspore-lite-{version}-converter-win-{process_unit}.zip`。解压后,即可获得编译后的工具包,名称为`mindspore-lite-{version}`。
-
-> version:输出件版本,与所编译的MindSpore版本一致。
-> process_unit:输出件应部署的处理器类型。
-
-### 编译示例
-
-首先,使用git工具从MindSpore代码仓下载源码。
-
-```bash
-git clone https://gitee.com/mindspore/mindspore.git
-```
-
-然后,使用cmd工具在源码根目录下,执行如下命令即可编译MindSpore Lite。
-
-- 以默认线程数(6线程)编译Windows版本。
- ```bash
- call build.bat lite
- ```
-- 以指定线程数8编译Windows版本。
- ```bash
- call build.bat lite 8
- ```
-
-> `build.bat`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
-
-编译完成之后,进入`mindspore/output/`目录,解压后即可获取输出件`converter`。
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_app_result.jpg b/lite/tutorials/source_zh_cn/images/lite_quick_start_app_result.jpg
index ca1f0ff80d553333f78a89bf132bbeab7666043d..9287aad111992c39145c70f6a473818e31402bc7 100644
Binary files a/lite/tutorials/source_zh_cn/images/lite_quick_start_app_result.jpg and b/lite/tutorials/source_zh_cn/images/lite_quick_start_app_result.jpg differ
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_home.png b/lite/tutorials/source_zh_cn/images/lite_quick_start_home.png
index 29e954a425c3b42e61353b97394d774f646cada7..c48cf581b33afbc15dbf27be495215b999e1be60 100644
Binary files a/lite/tutorials/source_zh_cn/images/lite_quick_start_home.png and b/lite/tutorials/source_zh_cn/images/lite_quick_start_home.png differ
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_install.jpg b/lite/tutorials/source_zh_cn/images/lite_quick_start_install.jpg
deleted file mode 100644
index c98ee71dae722be180a8b88c1661eabf85c97dce..0000000000000000000000000000000000000000
Binary files a/lite/tutorials/source_zh_cn/images/lite_quick_start_install.jpg and /dev/null differ
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_install.png b/lite/tutorials/source_zh_cn/images/lite_quick_start_install.png
new file mode 100644
index 0000000000000000000000000000000000000000..cc66708f0633c537e111d65a4b4e8a411a9322af
Binary files /dev/null and b/lite/tutorials/source_zh_cn/images/lite_quick_start_install.png differ
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_project_structure.png b/lite/tutorials/source_zh_cn/images/lite_quick_start_project_structure.png
index 6f71294479c4cd91dd983136d7f13960227c3c57..ade37a61ef97a479401240215e302011c014824c 100644
Binary files a/lite/tutorials/source_zh_cn/images/lite_quick_start_project_structure.png and b/lite/tutorials/source_zh_cn/images/lite_quick_start_project_structure.png differ
diff --git a/lite/tutorials/source_zh_cn/images/lite_quick_start_sdk.png b/lite/tutorials/source_zh_cn/images/lite_quick_start_sdk.png
index faf694bd2e69ec1e4b33ddfe944612e8472b7600..1fcb8acabc9ba9d289efbe7e82ee5e2da8bfe073 100644
Binary files a/lite/tutorials/source_zh_cn/images/lite_quick_start_sdk.png and b/lite/tutorials/source_zh_cn/images/lite_quick_start_sdk.png differ
diff --git a/lite/tutorials/source_zh_cn/quick_start/quick_start.md b/lite/tutorials/source_zh_cn/quick_start/quick_start.md
index b3730d2ea44d6cecbce11b98df19aeba20a4d9ac..ae3a881b243158477d7b7c8fa6b226ce1c3dfa7e 100644
--- a/lite/tutorials/source_zh_cn/quick_start/quick_start.md
+++ b/lite/tutorials/source_zh_cn/quick_start/quick_start.md
@@ -1,8 +1,8 @@
-# 快速入门(Lite)
+# 快速入门
-- [快速入门(Lite)](#快速入门lite)
+- [快速入门](#快速入门)
- [概述](#概述)
- [选择模型](#选择模型)
- [转换模型](#转换模型)
@@ -17,6 +17,8 @@
+
+
## 概述
我们推荐你从端侧Android图像分类demo入手,了解MindSpore Lite应用工程的构建、依赖项配置以及相关API的使用。
@@ -26,17 +28,17 @@
2. 将模型转换成MindSpore Lite模型格式。
3. 在端侧使用MindSpore Lite推理模型。详细说明如何在端侧利用MindSpore Lite C++ API(Android JNI)和MindSpore Lite图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在APP图像预览界面中,显示出最可能的分类结果。
-> 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/lite/image_classif)。
+> 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/lite/image_classification)。
## 选择模型
MindSpore团队提供了一系列预置终端模型,你可以在应用程序中使用这些预置的终端模型。
-MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)。
-同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务,操作流程参见[重训练章节](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#id6)。
+MindSpore Model Zoo中图像分类模型可[在此下载]((https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms))。
+同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务。
## 转换模型
-如果你需要对MindSpore提供的模型进行重训,重训完成后,需要将模型导出为[.mindir格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#mindir)。然后使用MindSpore Lite[模型转换工具](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/converter_tool.html)将.mindir模型转换成.ms格式。
+如果预置模型已经满足你要求,请跳过本章节。 如果你需要对MindSpore提供的模型进行重训,重训完成后,需要将模型导出为[.mindir格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#mindir)。然后使用MindSpore Lite[模型转换工具](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/converter_tool.html)将.mindir模型转换成.ms格式。
以MindSpore MobilenetV2模型为例,如下脚本将其转换为MindSpore Lite模型用于端侧推理。
```bash
@@ -51,7 +53,7 @@ MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)。
- Android Studio >= 3.2 (推荐4.0以上版本)
- NDK 21.3
-- CMake
+- CMake 10.1
- Android SDK >= 26
- OpenCV >= 4.0.0 (本示例代码已包含)
@@ -79,7 +81,7 @@ MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)。
3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
- 
+ 
如下图所示,成功识别出图中内容是键盘和鼠标。
@@ -88,7 +90,7 @@ MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)。
## 示例程序详细说明
-本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层在[Runtime](https://www.mindspore.cn/tutorial/zh-CN/master/use/lite_runtime.html)中完成模型推理的过程。
+本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层在[Runtime](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/runtime.html)中完成模型推理的过程。
> 此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
@@ -110,9 +112,7 @@ app
| | └── model.ms # 存放模型文件
│ |
│ ├── cpp # 模型加载和预测主要逻辑封装类
-| | ├── include # 存放MindSpore调用相关的头文件
-| | | └── ...
-│ | |
+| | ├── ..
| | ├── MindSporeNetnative.cpp # MindSpore调用相关的JNI方法
│ | └── MindSporeNetnative.h # 头文件
│ |
@@ -134,9 +134,21 @@ app
### 配置MindSpore Lite依赖项
-Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html)生成`libmindspore-lite.so`库文件,或直接下载MindSpore Lite提供的已编译完成的AMR64、ARM32、x86等[软件包](#TODO)。
+Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/docs/zh-CN/master/compile.html)生成`libmindspore-lite.so`库文件。
+
+本示例中,bulid过程由download.gradle文件配置自动下载`libmindspore-lite.so`以及OpenCV的`libopencv_java4.so`库文件,并放置在`app/libs/arm64-v8a`目录下。
+
+注: 若自动下载失败,请手动下载相关库文件并将其放在对应位置:
+
+libmindspore-lite.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/libmindspore-lite.so)
+
+libmindspore-lite include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/mindspore%20version%200.7/include.zip)
+
+libopencv_java4.so [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/libopencv_java4.so)
+
+libopencv include文件 [下载链接](https://download.mindspore.cn/model_zoo/official/lite/lib/opencv%204.4.0/include.zip)
+
-在Android Studio中将编译完成的`libmindspore-lite.so`库文件(可包含多个兼容架构),分别放置在APP工程的`app/libs/ARM64-V8a`(ARM64)或`app/libs/armeabi-v7a`(ARM32)目录下,并在应用的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a`和`armeabi-v7a`的编译支持。
```
android{
@@ -154,7 +166,7 @@ android{
}
```
-在`app/CMakeLists.txt`文件中建立`.so`或`.a`库文件链接,如下所示。
+在`app/CMakeLists.txt`文件中建立`.so`库文件链接,如下所示。
```
# Set MindSpore Lite Dependencies.
@@ -180,7 +192,9 @@ target_link_libraries(
### 下载及部署模型文件
-从MindSpore Model Hub中下载模型文件,本示例程序中使用的终端图像分类模型文件为`mobilenet_v2.ms`,放置在`app/src/main/assets`工程目录下。
+从MindSpore Model Hub中下载模型文件,本示例程序中使用的终端图像分类模型文件为`mobilenet_v2.ms`,同样通过`download.gradle`脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。
+
+注:若下载失败请手工下载模型文件,mobilenetv2.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)
### 编写端侧推理代码
@@ -205,7 +219,6 @@ target_link_libraries(
// Create context.
lite::Context *context = new lite::Context;
- context->cpu_bind_mode_ = lite::NO_BIND;
context->device_ctx_.type = lite::DT_CPU;
context->thread_num_ = numThread; //Specify the number of threads to run inference
@@ -222,7 +235,7 @@ target_link_libraries(
CreateSession(modelBuffer, bufferLen, ctx);
session = mindspore::session::LiteSession::CreateSession(ctx);
auto model = mindspore::lite::Model::Import(modelBuffer, bufferLen);
- int ret = session->CompileGraph(model); // Compile Graph
+ int ret = session->CompileGraph(model);
}
```
@@ -255,8 +268,8 @@ target_link_libraries(
memcpy(inTensor->MutableData(), dataHWC,
inputDims.channel * inputDims.width * inputDims.height * sizeof(float));
delete[] (dataHWC);
- ```
-
+ ```
+
3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。
- 图执行,端测推理。
@@ -268,7 +281,7 @@ target_link_libraries(
- 获取输出数据。
```cpp
- auto msOutputs = mSession->GetOutputs();
+ auto msOutputs = mSession->GetOutputMapByNode();
std::string retStr = ProcessRunnetResult(msOutputs, ret);
```
@@ -286,19 +299,12 @@ target_link_libraries(
int OUTPUTS_LEN = branch1_tensor[0]->ElementsNum();
-
- MS_PRINT("OUTPUTS_LEN:%d", OUTPUTS_LEN);
-
float *temp_scores = static_cast
1:表示大核
0:表示不绑定 |
-| `--device=
bin:表示输入数据的类型为二进制文件 |
@@ -68,13 +68,13 @@ Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具
Benchmark工具进行的性能测试主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,不需要设置`calibDataPath`等标杆数据参数。例如:
```bash
-./benchmark --modelPath=./models/face/age/ml_face_age.ms
+./benchmark --modelPath=./models/test_benchmark.ms
```
这条命令使用随机输入,其他参数使用默认值。该命令执行后会输出如下统计信息,该信息显示了测试模型在运行指定推理轮数后所统计出的单次推理最短耗时、单次推理最长耗时和平均推理耗时。
```
-Model = ml_face_age.ms, numThreads = 2, MinRunTime = 72.228996 ms, MaxRuntime = 73.094002 ms, AvgRunTime = 72.556000 ms
+Model = test_benchmark.ms, numThreads = 2, MinRunTime = 72.228996 ms, MaxRuntime = 73.094002 ms, AvgRunTime = 72.556000 ms
```
### 精度测试
@@ -82,10 +82,10 @@ Model = ml_face_age.ms, numThreads = 2, MinRunTime = 72.228996 ms, MaxRuntime =
Benchmark工具进行的精度测试主要是通过设置标杆数据来对比验证MindSpore Lite模型输出的精确性。在精确度测试任务中,除了需要设置`modelPath`参数以外,还必须设置`calibDataPath`参数。例如:
```bash
-./benchmark --modelPath=./models/face/age/ml_face_age.ms --inDataPath=./data/input/ml_face_age.ms.bin --device=NPU --accuracyThreshold=3 --calibDataPath=./data/output/face/ml_face_age.ms.out
+./benchmark --modelPath=./models/test_benchmark.ms --inDataPath=./input/test_benchmark.bin --device=CPU --accuracyThreshold=3 --calibDataPath=./output/test_benchmark.out
```
-这条命令指定了测试模型的输入数据、标杆数据,同时指定了模型推理程序在NPU上运行,并指定了准确度阈值为3%。该命令执行后会输出如下统计信息,该信息显示了测试模型的单条输入数据、输出节点的输出结果和平均偏差率以及所有节点的平均偏差率。
+这条命令指定了测试模型的输入数据、标杆数据,同时指定了模型推理程序在CPU上运行,并指定了准确度阈值为3%。该命令执行后会输出如下统计信息,该信息显示了测试模型的单条输入数据、输出节点的输出结果和平均偏差率以及所有节点的平均偏差率。
```
InData0: 139.947 182.373 153.705 138.945 108.032 164.703 111.585 227.402 245.734 97.7776 201.89 134.868 144.851 236.027 18.1142 22.218 5.15569 212.318 198.43 221.853
diff --git a/lite/tutorials/source_zh_cn/use/converter_tool.md b/lite/tutorials/source_zh_cn/use/converter_tool.md
index d5402a61523a45e9fdfce61be2ddd73b4f1d157c..42ea5d2bb4b58d223be0783f9c2b45473b63cea8 100644
--- a/lite/tutorials/source_zh_cn/use/converter_tool.md
+++ b/lite/tutorials/source_zh_cn/use/converter_tool.md
@@ -7,12 +7,10 @@
- [Linux环境使用说明](#linux环境使用说明)
- [环境准备](#环境准备)
- [参数说明](#参数说明)
- - [模型可视化](#模型可视化)
- [使用示例](#使用示例)
- [Windows环境使用说明](#windows环境使用说明)
- [环境准备](#环境准备-1)
- [参数说明](#参数说明-1)
- - [模型可视化](#模型可视化-1)
- [使用示例](#使用示例-1)
@@ -21,7 +19,7 @@
## 概述
-MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模型转换,同时提供转化后模型可视化的功能,转换后的模型可用于推理。命令行参数包含多种个性化选项,为用户提供方便的转换途径。
+MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模型转换,转换后的模型可用于推理。命令行参数包含多种个性化选项,为用户提供方便的转换途径。
目前支持的输入格式有:MindSpore、TensorFlow Lite、Caffe和ONNX。
@@ -31,9 +29,9 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
-- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id2)和[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。
+- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id2)和[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。
-- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id4),获得`converter`工具,并配置环境变量。
+- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html#id4),获得`converter`工具,并配置环境变量。
### 参数说明
@@ -49,20 +47,19 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
| `--modelFile=
AwareTraining:感知量化。 | - |
+| `--quantType=
AwareTraining:感知量化。 | - |
+|` --inputInferenceType=
-
## Overview
MindSpore Serving is a lightweight and high-performance service module that helps MindSpore developers efficiently deploy online inference services in the production environment. After completing model training using MindSpore, you can export the MindSpore model and use MindSpore Serving to create an inference service for the model. Currently, only Ascend 910 is supported.
-
## Starting Serving
After MindSpore is installed using `pip`, the Serving executable program is stored in `/{your python path}/lib/python3.7/site-packages/mindspore/ms_serving`.
Run the following command to start Serving:
-```bash
-ms_serving [--help] [--model_path