From fec583b6a12f509676ce58e6238dce99db604f18 Mon Sep 17 00:00:00 2001 From: lvmingfu <630944715@qq.com> Date: Mon, 31 Aug 2020 09:20:01 +0800 Subject: [PATCH] modify codes formats in quantization tutorials for master --- tutorials/source_en/advanced_use/quantization_aware.md | 6 +++--- tutorials/source_zh_cn/advanced_use/quantization_aware.md | 6 +++--- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/tutorials/source_en/advanced_use/quantization_aware.md b/tutorials/source_en/advanced_use/quantization_aware.md index d554ee267c..91e94d6136 100644 --- a/tutorials/source_en/advanced_use/quantization_aware.md +++ b/tutorials/source_en/advanced_use/quantization_aware.md @@ -82,10 +82,10 @@ Next, the LeNet network is used as an example to describe steps 3 and 6. Define a fusion network and replace the specified operators. -1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.Relu` in the original network model. -2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.Relu` in the original network model. +1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.ReLU` in the original network model. +2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.ReLU` in the original network model. -> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.Batchnorm` and `nn.Relu`, the preceding two replacement operations must be performed as required. +> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.BatchNorm*` and `nn.ReLU`, the preceding two replacement operations must be performed as required. The definition of the original network model LeNet5 is as follows: diff --git a/tutorials/source_zh_cn/advanced_use/quantization_aware.md b/tutorials/source_zh_cn/advanced_use/quantization_aware.md index 19f4d6a4c7..6d4a06c6d7 100644 --- a/tutorials/source_zh_cn/advanced_use/quantization_aware.md +++ b/tutorials/source_zh_cn/advanced_use/quantization_aware.md @@ -82,10 +82,10 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替 定义融合网络,在定义网络后,替换指定的算子。 -1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d`和`nn.Relu`。 -2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense`和`nn.Relu`。 +1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d`和`nn.ReLU`。 +2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense`和`nn.ReLU`。 -> 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm`和`nn.Relu`,都要按规定使用上述两个算子进行融合替换。 +> 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm*`和`nn.ReLU`,都要按规定使用上述两个算子进行融合替换。 原网络模型LeNet5的定义如下所示: -- Gitee