From ca14009ebde5835af32f3e22439698cbd7d34a35 Mon Sep 17 00:00:00 2001 From: Ting Wang Date: Wed, 29 Apr 2020 11:02:47 +0800 Subject: [PATCH] Add MindSpore benchmarks Signed-off-by: Ting Wang --- docs/source_en/benchmark.md | 27 +++++++++++++++++++ docs/source_en/index.rst | 1 + docs/source_zh_cn/benchmark.md | 26 ++++++++++++++++++ docs/source_zh_cn/index.rst | 1 + .../advanced_use/use_on_the_cloud.md | 7 +---- 5 files changed, 56 insertions(+), 6 deletions(-) create mode 100644 docs/source_en/benchmark.md create mode 100644 docs/source_zh_cn/benchmark.md diff --git a/docs/source_en/benchmark.md b/docs/source_en/benchmark.md new file mode 100644 index 0000000000..b1de5b03aa --- /dev/null +++ b/docs/source_en/benchmark.md @@ -0,0 +1,27 @@ +# Benchmarks + +This document describes the MindSpore benchmarks. +For details about the MindSpore pre-trained model, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo). + +## Training Performance + +### ResNet + +| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup | +| --- | --- | --- | --- | --- | --- | --- | --- | --- | +| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.2.0-alpha | Ascend: 1 * Ascend 910
CPU:24 Cores | Mixed | 32 | 1787 images/sec | - | +| | | | | Ascend: 8 * Ascend 910
CPU:192 Cores | Mixed | 32 | 13689 images/sec | 0.95 | +| | | | | Ascend: 16 * Ascend 910
CPU:384 Cores | Mixed | 32 | 27090 images/sec | 0.94 | + +1. The preceding performance is obtained based on ModelArts, the HUAWEI CLOUD AI development platform. It is the average performance obtained by the Ascend 910 AI processor during the overall training process. +2. For details about other open source frameworks, see [ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5#nvidia-dgx-2-16x-v100-32g). + +### BERT + +| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup | +| --- | --- | --- | --- | --- | --- | --- | --- | --- | +| BERT-Large | Attention | zhwiki | 0.2.0-alpha | Ascend: 1 * Ascend 910
CPU:24 Cores | Mixed | 96 | 210 sentences/sec | - | +| | | | | Ascend: 8 * Ascend 910
CPU:192 Cores | Mixed | 96 | 1613 sentences/sec | 0.96 | + +1. The preceding performance is obtained based on ModelArts, the HUAWEI CLOUD AI development platform. The network contains 24 hidden layers, the sequence length is 128 tokens, and the vocabulary contains 21128 tokens. +2. For details about other open source frameworks, see [BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT). \ No newline at end of file diff --git a/docs/source_en/index.rst b/docs/source_en/index.rst index 379ddea08c..16131f7e38 100644 --- a/docs/source_en/index.rst +++ b/docs/source_en/index.rst @@ -12,6 +12,7 @@ MindSpore Documentation architecture roadmap + benchmark constraints_on_network_construction operator_list glossary diff --git a/docs/source_zh_cn/benchmark.md b/docs/source_zh_cn/benchmark.md new file mode 100644 index 0000000000..0b486617ec --- /dev/null +++ b/docs/source_zh_cn/benchmark.md @@ -0,0 +1,26 @@ +# 基准性能 + +本文介绍MindSpore的基准性能。MindSpore预训练模型可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)。 + +## 训练性能 + +### ResNet + +| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup | +| --- | --- | --- | --- | --- | --- | --- | --- | --- | +| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.2.0-alpha | Ascend: 1 * Ascend 910
CPU:24 Cores | Mixed | 32 | 1787 images/sec | - | +| | | | | Ascend: 8 * Ascend 910
CPU:192 Cores | Mixed | 32 | 13689 images/sec | 0.95 | +| | | | | Ascend: 16 * Ascend 910
CPU:384 Cores | Mixed | 32 | 27090 images/sec | 0.94 | + +1. 以上数据基于华为云AI开发平台ModelArts测试获得,是训练过程整体下沉至Ascend 910 AI处理器执行所得的平均性能。 +2. 业界其他开源框架数据可参考:[ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5#nvidia-dgx-2-16x-v100-32g)。 + +### BERT + +| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup | +| --- | --- | --- | --- | --- | --- | --- | --- | --- | +| BERT-Large | Attention | zhwiki | 0.2.0-alpha | Ascend: 1 * Ascend 910
CPU:24 Cores | Mixed | 96 | 210 sentences/sec | - | +| | | | | Ascend: 8 * Ascend 910
CPU:192 Cores | Mixed | 96 | 1613 sentences/sec | 0.96 | + +1. 以上数据基于华为云AI开发平台ModelArts测试获得,其中网络包含24个隐藏层,句长为128个token,字典表包含21128个token。 +2. 业界其他开源框架数据可参考:[BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT)。 \ No newline at end of file diff --git a/docs/source_zh_cn/index.rst b/docs/source_zh_cn/index.rst index 0c25192799..98a53318d7 100644 --- a/docs/source_zh_cn/index.rst +++ b/docs/source_zh_cn/index.rst @@ -12,6 +12,7 @@ MindSpore文档 architecture roadmap + benchmark constraints_on_network_construction operator_list glossary diff --git a/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md b/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md index 4a54faf046..8acca15e18 100644 --- a/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md +++ b/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md @@ -25,12 +25,7 @@ ## 概述 -ModelArts是华为云提供的面向开发者的一站式AI开发平台,集成了昇腾AI处理器资源池,用户可以在该平台下体验MindSpore。在ModelArts上使用MindSpore 0.2.0-alpha版本的训练性能如下表所示。 - -| 模型 | 数据集 | MindSpore版本 | 资源 | 处理速度(images/sec) | -| --- | --- | --- | --- | --- | -| ResNet-50 v1.5 | CIFAR-10 | 0.2.0-alpha | Ascend: 1 * Ascend 910
CPU:24 核 96GiB | 1,759.0 | -| ResNet-50 v1.5 | CIFAR-10 | 0.2.0-alpha | Ascend: 8 * Ascend 910
CPU:192 核 768GiB | 13,391.6 | +ModelArts是华为云提供的面向开发者的一站式AI开发平台,集成了昇腾AI处理器资源池,用户可以在该平台下体验MindSpore。 本教程以ResNet-50为例,简要介绍如何在ModelArts使用MindSpore完成训练任务。 -- Gitee