diff --git a/MindFlow/applications/data_mechanism_fusion/phympgn/README.md b/MindFlow/applications/data_mechanism_fusion/phympgn/README.md
index 5dfb7543f73029fddad74f03ea28e280c7a555e4..057b9815917c3c2a8c5150a97599d990ff596f59 100644
--- a/MindFlow/applications/data_mechanism_fusion/phympgn/README.md
+++ b/MindFlow/applications/data_mechanism_fusion/phympgn/README.md
@@ -10,7 +10,9 @@ Physics-encoded Message Passing Graph Network (PhyMPGN) is capable to model spat
- Considering the universality of diffusion processes in physical phenomena, a learnable Laplace Block is designed, which encodes the discrete Laplace-Beltrami operator
- A novel padding strategy to encode different types of BCs into the learning model is proposed.
-Paper link: [https://arxiv.org/abs/2410.01337](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F2410.01337)
+Paper link: [https://arxiv.org/abs/2410.01337](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F2410.01337).
+
+This paper has been accepted as ICLR 2025 Spotlight, see https://openreview.net/forum?id=fU8H4lzkIm¬eId=wS5SaVKjWt.
## Problem Setup
@@ -107,7 +109,8 @@ $Re=480$
| Dataset | Cylinder flow |
| Model Parameters | 950k |
| Training Configuration | batch_size=4,
epochs=1600 |
-| Training Loss
(MSE) | |
-| Inference Loss
(MSE) | |
+| Training Loss
(MSE) | 3.05e-5 |
+| Validation Loss
(MSE) | 5.58e-6 |
+| Inference MSE | 4.88e-2 |
| Training Speed
(s / epoch) | 420 s |
| Inference Speed
(s / trajectory) | 174 s |
diff --git a/MindFlow/applications/data_mechanism_fusion/phympgn/README_CN.md b/MindFlow/applications/data_mechanism_fusion/phympgn/README_CN.md
index 55ae876f7264ef8b1710886c3453d0b57c5b4276..8b19fe6d5ffb7fb744d4650f6f8ef05a64664ed1 100644
--- a/MindFlow/applications/data_mechanism_fusion/phympgn/README_CN.md
+++ b/MindFlow/applications/data_mechanism_fusion/phympgn/README_CN.md
@@ -8,7 +8,9 @@
- 考虑到物理现象中普遍存在扩散过程,设计了一个可学习的Laplace Block,编码了离散拉普拉斯-贝尔特拉米算子(Laplace-Beltrami Operator)
- 提出了一个新颖的填充策略在模型中编码不同类型的边界条件
-论文链接: [https://arxiv.org/abs/2410.01337](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F2410.01337)
+论文链接: [https://arxiv.org/abs/2410.01337](https://gitee.com/link?target=https%3A%2F%2Farxiv.org%2Fabs%2F2410.01337)。
+
+该论文被接收为 ICLR 2025 Spotlight,详见 https://openreview.net/forum?id=fU8H4lzkIm¬eId=wS5SaVKjWt。
## 问题描述
@@ -105,7 +107,8 @@ $Re=480$
| 数据集 | Cylinder flow |
| 参数量 | 950k |
| 训练参数 | batch_size=4,
epochs=1600 |
-| 训练损失
(MSE) | |
-| 推理损失
(MSE) | |
+| 训练损失
(MSE) | 3.05e-5 |
+| 验证损失
(MSE) | 5.58e-6 |
+| 推理误差
(MSE) | 4.88e-2 |
| 训练速度
(s / epoch) | 420 s |
| 推理速度
(s / trajectory) | 174 s |