diff --git a/.jenkins/check/config/filter_linklint.txt b/.jenkins/check/config/filter_linklint.txt index bbd5911cd0e8ee2f07f021bc1eb3d14c872b6bd4..e5a98919a968d255fb35243b300b9815247ab0a6 100644 --- a/.jenkins/check/config/filter_linklint.txt +++ b/.jenkins/check/config/filter_linklint.txt @@ -1,2 +1,3 @@ http://www.vision.caltech.edu/visipedia/CUB-200-2011.html -http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth \ No newline at end of file +http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth +https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py_key diff --git a/.jenkins/check/config/whitelizard.txt b/.jenkins/check/config/whitelizard.txt index 5f42aed7c1fda63e39354e1615f10d6338beb3e7..a571f39f3f1561273618439722f250b731dbd806 100644 --- a/.jenkins/check/config/whitelizard.txt +++ b/.jenkins/check/config/whitelizard.txt @@ -55,4 +55,5 @@ models/research/cvtmodel/resnet_ipl/src/resnet26t.py:__init__ models/research/cvtmodel/resnet_ipl/src/resnet101d.py:__init__ models/research/cvtmodel/resnet_ipl/src/resnetrs50.py:__init__ models/official/audio/lpcnet/ascend310_infer/src/main.cc:main +models/official/nlp/bert/src/finetune_data_preprocess.py:process_msra diff --git a/benchmark/ascend/bert/src/dataset.py b/benchmark/ascend/bert/src/dataset.py index a611c1ef5629d2d2b8f87375422474cbc9ef855d..433ebe2cc5d92dce6b133c9125212b5a7a09ee5b 100644 --- a/benchmark/ascend/bert/src/dataset.py +++ b/benchmark/ascend/bert/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import math import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger diff --git a/benchmark/ascend/resnet/src/dataset.py b/benchmark/ascend/resnet/src/dataset.py index 77809beb7135f291b2b735bda1dcc1426b32e26c..d96526cb3fcc98b7b43563cca64041d9256674e8 100644 --- a/benchmark/ascend/resnet/src/dataset.py +++ b/benchmark/ascend/resnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -49,18 +49,18 @@ def create_dataset1(dataset_path, do_train, batch_size=32, train_image_size=224, trans = [] if do_train: trans += [ - ds.vision.c_transforms.RandomCrop((32, 32), (4, 4, 4, 4)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) + ds.vision.RandomCrop((32, 32), (4, 4, 4, 4)), + ds.vision.RandomHorizontalFlip(prob=0.5) ] trans += [ - ds.vision.c_transforms.Resize((train_image_size, train_image_size)), - ds.vision.c_transforms.Rescale(1.0 / 255.0, 0.0), - ds.vision.c_transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Resize((train_image_size, train_image_size)), + ds.vision.Rescale(1.0 / 255.0, 0.0), + ds.vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=get_num_parallel_workers(8)) @@ -115,18 +115,18 @@ def create_dataset2(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5) ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size) + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size) ] - trans_norm = [ds.vision.c_transforms.Normalize(mean=mean, std=std), ds.vision.c_transforms.HWC2CHW()] + trans_norm = [ds.vision.Normalize(mean=mean, std=std), ds.vision.HWC2CHW()] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) if device_num == 1: trans_work_num = 24 else: @@ -187,21 +187,21 @@ def create_dataset_pynative(dataset_path, do_train, batch_size=32, train_image_s # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=4) # only enable cache for eval @@ -253,21 +253,21 @@ def create_dataset3(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(rank_id / (rank_id + 1)), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(rank_id / (rank_id + 1)), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=get_num_parallel_workers(8)) # only enable cache for eval @@ -321,21 +321,21 @@ def create_dataset4(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(292), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(292), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=get_num_parallel_workers(12)) # only enable cache for eval if do_train: diff --git a/benchmark/ascend/resnet/src/dataset_infer.py b/benchmark/ascend/resnet/src/dataset_infer.py index 5d0a655e88ecfda28ad455515ba4fc17976b3b6d..ce032b1db63c91a8d622b41889b32dc65d5d1ed8 100644 --- a/benchmark/ascend/resnet/src/dataset_infer.py +++ b/benchmark/ascend/resnet/src/dataset_infer.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -130,21 +130,21 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target=" # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) @@ -202,21 +202,21 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(rank_id / (rank_id + 1)), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(rank_id / (rank_id + 1)), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) @@ -271,21 +271,21 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target= # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(292), - ds.vision.c_transforms.CenterCrop(256), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(292), + ds.vision.CenterCrop(256), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12) if do_train: diff --git a/official/cv/Deepsort/modelarts/start_train.py b/official/cv/Deepsort/modelarts/start_train.py index 879d8f232d46213a7bc60851c630ca60ff5e8474..bed1034504e136b59068b5e654aa68bab2c38231 100644 --- a/official/cv/Deepsort/modelarts/start_train.py +++ b/official/cv/Deepsort/modelarts/start_train.py @@ -21,7 +21,7 @@ import numpy as np import moxing as mox import mindspore.nn as nn import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.common import set_seed from mindspore.common import dtype as mstype diff --git a/official/cv/Deepsort/src/deep/train.py b/official/cv/Deepsort/src/deep/train.py index 3d5e0a2278b5be94ce1ab5efcbfa4dc1ea704971..9488a1f227a7f33c2fe1f9b72c45dd98d916f468 100644 --- a/official/cv/Deepsort/src/deep/train.py +++ b/official/cv/Deepsort/src/deep/train.py @@ -16,7 +16,7 @@ import argparse import os import ast import numpy as np -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as ds import mindspore.nn as nn from mindspore import Tensor, context @@ -24,7 +24,7 @@ from mindspore.communication.management import init, get_rank from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor from mindspore.train.model import Model from mindspore.context import ParallelMode -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 from mindspore.common import set_seed import mindspore.common.dtype as mstype from original_model import Net diff --git a/official/cv/alexnet/src/dataset.py b/official/cv/alexnet/src/dataset.py index 149ffdb05a403a83c3cb329d37d68a24855ee56e..6fcc88205e7cbd604e5b1c236c52e5f7c105531e 100644 --- a/official/cv/alexnet/src/dataset.py +++ b/official/cv/alexnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ Produce the dataset import os from multiprocessing import cpu_count import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as CV from mindspore.common import dtype as mstype from mindspore.communication.management import get_rank, get_group_size diff --git a/official/cv/brdnet/src/dataset.py b/official/cv/brdnet/src/dataset.py index 9e870625fa77b7a077af525e7a23b43f209a53b0..dbdde6da5fbff6850aa14af597ed0495bf6c3a93 100644 --- a/official/cv/brdnet/src/dataset.py +++ b/official/cv/brdnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import glob import numpy as np import PIL.Image as Image import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV class BRDNetDataset: """ BRDNetDataset. diff --git a/official/cv/cnn_direction_model/src/dataset.py b/official/cv/cnn_direction_model/src/dataset.py index ec1bbdefe0d257ccfa89e15da7b41ba201a2f127..b91ec59855333ce5d9e3bc01671d702d5134e739 100644 --- a/official/cv/cnn_direction_model/src/dataset.py +++ b/official/cv/cnn_direction_model/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import cv2 import numpy as np import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.dataset_utils import lucky, noise_blur, noise_speckle, noise_gamma, noise_gaussian, noise_salt_pepper, \ shift_color, enhance_brightness, enhance_sharpness, enhance_contrast, enhance_color, gaussian_blur, \ randcrop, resize, rdistort, rgeometry, rotate_about_center, whole_rdistort, warp_perspective, random_contrast, \ diff --git a/official/cv/crnn/src/dataset.py b/official/cv/crnn/src/dataset.py index 1d07a34f9ad7aab1642f573b2ee114915f78f449..2f07b734ab9b8b2bf343e77e7289be572cc84819 100644 --- a/official/cv/crnn/src/dataset.py +++ b/official/cv/crnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import numpy as np from PIL import Image, ImageFile import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vc +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vc from src.model_utils.config import config as config1 from src.ic03_dataset import IC03Dataset from src.ic13_dataset import IC13Dataset diff --git a/official/cv/crnn_seq2seq_ocr/src/dataset.py b/official/cv/crnn_seq2seq_ocr/src/dataset.py index 40abc60fd46213668daf82805d98137dd89b3526..9d12f36c2e069254ba937ee17a4c968eb020f134 100644 --- a/official/cv/crnn_seq2seq_ocr/src/dataset.py +++ b/official/cv/crnn_seq2seq_ocr/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import numpy as np from PIL import Image import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.vision.py_transforms as P -import mindspore.dataset.transforms.c_transforms as ops +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as ops import mindspore.common.dtype as mstype from src.model_utils.config import config @@ -36,7 +35,7 @@ class AugmentationOps(): self.min_area_ratio = min_area_ratio self.aspect_ratio_range = aspect_ratio_range self.img_tile_shape = img_tile_shape - self.random_image_distortion_ops = P.RandomColorAdjust(brightness=brightness, + self.random_image_distortion_ops = C.RandomColorAdjust(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue) diff --git a/official/cv/cspdarknet53/src/dataset.py b/official/cv/cspdarknet53/src/dataset.py index 9025cffdd2d7d52bedce4cf1398760f5ee469e61..e1c3c8e8593d2e1afc918175a2dd02c22a782f46 100644 --- a/official/cv/cspdarknet53/src/dataset.py +++ b/official/cv/cspdarknet53/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C from PIL import Image, ImageFile from .utils.sampler import DistributedSampler diff --git a/official/cv/ctpn/src/dataset.py b/official/cv/ctpn/src/dataset.py index a7936800e265af0f7b9c70efc292e0190f9e8dac..dfdf942a4186c66d55f62d6fba20877045d63578 100644 --- a/official/cv/ctpn/src/dataset.py +++ b/official/cv/ctpn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import numpy as np from numpy import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as CC +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as CC import mindspore.common.dtype as mstype from src.model_utils.config import config diff --git a/official/cv/darknet53/src/dataset.py b/official/cv/darknet53/src/dataset.py index d5bf8dde25bd1357589c92b1a18316c19c61842b..8984090c9585b594bf420eb65fdaf61bc5562063 100644 --- a/official/cv/darknet53/src/dataset.py +++ b/official/cv/darknet53/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", distribute=False): diff --git a/official/cv/deeptext/src/dataset.py b/official/cv/deeptext/src/dataset.py index 7198f4d8d5e56b0cc3b75161e401a03c98b2e3cb..7e598b96a7625aee96ec0efe37f0b9152f64327b 100644 --- a/official/cv/deeptext/src/dataset.py +++ b/official/cv/deeptext/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,8 +22,8 @@ from numpy import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as CC +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as CC import mindspore.common.dtype as mstype from mindspore.mindrecord import FileWriter from model_utils.config import config diff --git a/official/cv/densenet/src/datasets/classification.py b/official/cv/densenet/src/datasets/classification.py index 4386899926d9379bc74aa7ec16c149969d4e2b17..84444a6dc51640ad69ee1163b2ddc4b6c4dec7e9 100644 --- a/official/cv/densenet/src/datasets/classification.py +++ b/official/cv/densenet/src/datasets/classification.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,8 +21,8 @@ import os from PIL import Image, ImageFile from mindspore import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as vision_C -import mindspore.dataset.transforms.c_transforms as normal_C +import mindspore.dataset.vision as vision_C +import mindspore.dataset.transforms as normal_C from src.datasets.sampler import DistributedSampler ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/official/cv/depthnet/src/data_loader.py b/official/cv/depthnet/src/data_loader.py index 41ae8f41f82dfe52a8e5be95a116a2ff1dd38346..f5a87c89632b54516698c67b685e6690c59877d4 100644 --- a/official/cv/depthnet/src/data_loader.py +++ b/official/cv/depthnet/src/data_loader.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ import os import numpy as np from PIL import Image -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as CV import mindspore.dataset as ds from mindspore import dtype as mstype diff --git a/official/cv/depthnet/train.py b/official/cv/depthnet/train.py index 4308d7337dd8e46e94115307a8ff609a1f420f51..aaa80921405843c3f04eeb5d9797d2b5cbfb30c2 100644 --- a/official/cv/depthnet/train.py +++ b/official/cv/depthnet/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import time import mindspore.numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as CV import mindspore as ms from mindspore import nn, Tensor, Model from mindspore import dtype as mstype diff --git a/official/cv/dncnn/eval.py b/official/cv/dncnn/eval.py index 14683113fbfe0f3f255e4e75305111886b4409b4..dca93f8a5ea229e287c0d97091958c5a528dec08 100644 --- a/official/cv/dncnn/eval.py +++ b/official/cv/dncnn/eval.py @@ -1,5 +1,5 @@ #!/usr/bin/env python3 -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -27,7 +27,7 @@ import mindspore import mindspore.dataset as ds from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from src.model import DnCNN class DnCNN_eval_Dataset(): diff --git a/official/cv/dncnn/infer/data/preprocess/export_bin_file.py b/official/cv/dncnn/infer/data/preprocess/export_bin_file.py index b4b5462ec9637e9fcf5840cd4d4aa78597df2f3e..14c0cb59612d02afe5b1a5a1f55aa8dfa82cd8e3 100644 --- a/official/cv/dncnn/infer/data/preprocess/export_bin_file.py +++ b/official/cv/dncnn/infer/data/preprocess/export_bin_file.py @@ -23,7 +23,7 @@ import numpy as np import cv2 import mindspore import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def ResziePadding(img, fixed_side=256): diff --git a/official/cv/dncnn/src/dataset.py b/official/cv/dncnn/src/dataset.py index b8240c79ea7e7e3f85720125dd14986a2dda240d..69b6565c776a4dca7dcc990921f28809c316b9c9 100644 --- a/official/cv/dncnn/src/dataset.py +++ b/official/cv/dncnn/src/dataset.py @@ -1,5 +1,5 @@ #!/usr/bin/env python3 -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import cv2 import PIL import mindspore import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def create_train_dataset(data_path, model_type, noise_level=25, batch_size=128): # define dataset diff --git a/official/cv/dpn/src/imagenet_dataset.py b/official/cv/dpn/src/imagenet_dataset.py index 42ad7f9b972ebc9f2b184a5061700c63d1bea80a..cd73134f45e21baf8dfbc14a5a30880aec86cca8 100644 --- a/official/cv/dpn/src/imagenet_dataset.py +++ b/official/cv/dpn/src/imagenet_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,8 +20,8 @@ import cv2 from PIL import ImageFile from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/official/cv/east/detect.py b/official/cv/east/detect.py index 48f82516895ed43da657860ed628f149b9b1d5d0..eb807cd62e1663c284fdac0a0d651613086b80ac 100644 --- a/official/cv/east/detect.py +++ b/official/cv/east/detect.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import numpy as np import mindspore.ops as P from mindspore import Tensor -import mindspore.dataset.vision.py_transforms as V +import mindspore.dataset.vision as V from src.dataset import get_rotate_mat import lanms @@ -44,7 +44,7 @@ def load_pil(img): """convert PIL Image to Tensor """ img = V.ToTensor()(img) - img = V.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(img) + img = V.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)(img) img = Tensor(img) img = P.ExpandDims()(img, 0) return img diff --git a/official/cv/east/src/dataset.py b/official/cv/east/src/dataset.py index 79c6ddfbcfea755e579640e9826ebda1d1fbde7b..2f0da352004de618cc6d68e5c58fac5daec0fd84 100644 --- a/official/cv/east/src/dataset.py +++ b/official/cv/east/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import cv2 from PIL import Image import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV from src.distributed_sampler import DistributedSampler diff --git a/official/cv/efficientnet/src/dataset.py b/official/cv/efficientnet/src/dataset.py index 76a67f1494c79f5203dee8509ea0b70cca9f2498..7b8bd31087295adfbedda965d011e6f1861c1283 100644 --- a/official/cv/efficientnet/src/dataset.py +++ b/official/cv/efficientnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,8 +20,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C from mindspore.communication.management import get_group_size, get_rank from mindspore.dataset.vision import Inter diff --git a/official/cv/efficientnet/src/transform.py b/official/cv/efficientnet/src/transform.py index c34a8fe9441c1e78b8044d903f5787b4329b023d..39a1eebcb8c3bc226893924b00afe22de8d730a7 100644 --- a/official/cv/efficientnet/src/transform.py +++ b/official/cv/efficientnet/src/transform.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ random augment class """ import numpy as np -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as vision from src import transform_utils @@ -35,9 +35,9 @@ class RandAugment: # assert the imgs object are pil_images ret_imgs = [] ret_labels = [] - py_to_pil_op = P.ToPIL() - to_tensor = P.ToTensor() - normalize_op = P.Normalize(self.mean, self.std) + py_to_pil_op = vision.ToPIL() + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize(self.mean, self.std, is_hwc=False) rand_augment_ops = transform_utils.rand_augment_transform(self.config_str, self.hparams) for i, image in enumerate(imgs): img_pil = py_to_pil_op(image) diff --git a/official/cv/faster_rcnn/src/dataset.py b/official/cv/faster_rcnn/src/dataset.py index 64c955a4c3c0b623b54814cbbe27948bf37335a0..783f81f8c8d26f3f321a7e429f7540cc479aacca 100644 --- a/official/cv/faster_rcnn/src/dataset.py +++ b/official/cv/faster_rcnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -552,7 +552,7 @@ def create_fasterrcnn_dataset(config, mindrecord_file, batch_size=2, device_num= de.config.set_prefetch_size(8) ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id, num_parallel_workers=4, shuffle=is_training) - decode = ms.dataset.vision.c_transforms.Decode() + decode = ms.dataset.vision.Decode() ds = ds.map(input_columns=["image"], operations=decode) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training, config=config)) diff --git a/official/cv/fastscnn/eval.py b/official/cv/fastscnn/eval.py index 86b94b43026c48df342ac809cf62e32461c818c8..9e6993bc215384a81b4c2a263719b9a7ab9059be 100644 --- a/official/cv/fastscnn/eval.py +++ b/official/cv/fastscnn/eval.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,8 +23,8 @@ import mindspore.ops as ops from mindspore.context import ParallelMode from mindspore import load_checkpoint, load_param_into_net from mindspore.communication.management import init, get_rank, get_group_size -from mindspore.dataset.transforms.py_transforms import Compose -from mindspore.dataset.vision.py_transforms import ToTensor, Normalize +from mindspore.dataset.transforms.transforms import Compose +from mindspore.dataset.vision import ToTensor, Normalize from src.dataloader import create_CitySegmentation from src.fast_scnn import FastSCNN @@ -140,7 +140,7 @@ def validation(): # image transform input_transform = Compose([ ToTensor(), - Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], is_hwc=False), ]) if args.use_modelarts: import moxing as mox diff --git a/official/cv/fastscnn/modelarts/start_train.py b/official/cv/fastscnn/modelarts/start_train.py index 665956f5e899d82e7e3732096a60ed3333d2b712..8a17519e926b82d8d1ea77905dee864f6177414c 100644 --- a/official/cv/fastscnn/modelarts/start_train.py +++ b/official/cv/fastscnn/modelarts/start_train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -30,8 +30,8 @@ from mindspore.common.tensor import Tensor from mindspore.context import ParallelMode from mindspore import FixedLossScaleManager from mindspore import load_checkpoint, load_param_into_net -from mindspore.dataset.transforms.py_transforms import Compose -from mindspore.dataset.vision.py_transforms import ToTensor, Normalize +from mindspore.dataset.transforms.transforms import Compose +from mindspore.dataset.vision import ToTensor, Normalize from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint @@ -138,7 +138,7 @@ def train(): # image transform input_transform = Compose([ ToTensor(), - Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], is_hwc=False), ]) train_dataset, args.steps_per_epoch = create_CitySegmentation(args, data_path=args.dataset, \ diff --git a/official/cv/fastscnn/src/dataloader.py b/official/cv/fastscnn/src/dataloader.py index bdaae9a5098bee904fdc73134b428817e2d23540..b6a770a6309fd4a3878827082266e1c241a4df5d 100644 --- a/official/cv/fastscnn/src/dataloader.py +++ b/official/cv/fastscnn/src/dataloader.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import numpy as np from PIL import Image import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV from src.seg_data_base import SegmentationDataset diff --git a/official/cv/fastscnn/train.py b/official/cv/fastscnn/train.py index 8ba9af1a40af158f24d71e27bd63331bf17b97a9..17b98e5e09f57bf3e07192e5696a7b010863ab8e 100644 --- a/official/cv/fastscnn/train.py +++ b/official/cv/fastscnn/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -27,8 +27,8 @@ from mindspore.common.tensor import Tensor from mindspore.context import ParallelMode from mindspore import FixedLossScaleManager from mindspore import load_checkpoint, load_param_into_net -from mindspore.dataset.transforms.py_transforms import Compose -from mindspore.dataset.vision.py_transforms import ToTensor, Normalize +from mindspore.dataset.transforms.transforms import Compose +from mindspore.dataset.vision import ToTensor, Normalize from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import TimeMonitor, LossMonitor, CheckpointConfig, ModelCheckpoint @@ -130,7 +130,7 @@ def train(): # image transform input_transform = Compose([ ToTensor(), - Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), + Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], is_hwc=False), ]) if args.use_modelarts: diff --git a/official/cv/googlenet/src/dataset.py b/official/cv/googlenet/src/dataset.py index e7a82f05d16dac7253adee09af1d8b4e84abfb1c..bd6bb2b5215cf9e48299201fff1cb0a5979dcbdb 100644 --- a/official/cv/googlenet/src/dataset.py +++ b/official/cv/googlenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=None): """Data operations.""" diff --git a/official/cv/inceptionv3/src/dataset.py b/official/cv/inceptionv3/src/dataset.py index e7fb6076df445393ecd0be7a330159dca524ba06..f248974fbcb427557e311178a4267ec8dbffc54a 100644 --- a/official/cv/inceptionv3/src/dataset.py +++ b/official/cv/inceptionv3/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset_imagenet(dataset_path, do_train, cfg, repeat_num=1): diff --git a/official/cv/inceptionv4/src/dataset.py b/official/cv/inceptionv4/src/dataset.py index a27e4f1503566b2967b3191fb1f77b51cbc8e07a..3939cafba3132d618f674a36339db9fd43b91ead 100644 --- a/official/cv/inceptionv4/src/dataset.py +++ b/official/cv/inceptionv4/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset_imagenet(dataset_path, do_train, cfg, repeat_num=1): diff --git a/official/cv/lenet/src/dataset.py b/official/cv/lenet/src/dataset.py index b3801105b22db4a6c4a1ff9247fd391696520e29..623ee7b73ec87e7e89fc69130089a6e2a9314fde 100644 --- a/official/cv/lenet/src/dataset.py +++ b/official/cv/lenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Produce the dataset """ import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as CV +import mindspore.dataset.transforms as C from mindspore.dataset.vision import Inter from mindspore.common import dtype as mstype diff --git a/official/cv/maskrcnn/src/dataset.py b/official/cv/maskrcnn/src/dataset.py index bc05b98c7536fbb8ff252854d04a7cd21c1bf7c0..e6178203f7ec966ec8b932eca0ee557ba689726e 100644 --- a/official/cv/maskrcnn/src/dataset.py +++ b/official/cv/maskrcnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import numpy as np from numpy import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .model_utils.config import config diff --git a/official/cv/maskrcnn_mobilenetv1/src/dataset.py b/official/cv/maskrcnn_mobilenetv1/src/dataset.py index 5acba3a77a4f7c2848e92de268c032b3db9608ef..19e6e1c301dac4f4321e916a55426922e6a9f9d0 100644 --- a/official/cv/maskrcnn_mobilenetv1/src/dataset.py +++ b/official/cv/maskrcnn_mobilenetv1/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-21 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,7 +23,7 @@ import numpy as np from numpy import random import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from mindspore import context diff --git a/official/cv/mobilenetv1/src/dataset.py b/official/cv/mobilenetv1/src/dataset.py index 3d7c671508462dad5fed4f5541ae0076e123ccc1..3b62fd343b3812be9d60ae81c30b21f03ee8b60f 100644 --- a/official/cv/mobilenetv1/src/dataset.py +++ b/official/cv/mobilenetv1/src/dataset.py @@ -47,18 +47,18 @@ def create_dataset1(dataset_path, do_train, device_num=1, batch_size=32, target= trans = [] if do_train: trans += [ - ds.vision.c_transforms.RandomCrop((32, 32), (4, 4, 4, 4)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) + ds.vision.RandomCrop((32, 32), (4, 4, 4, 4)), + ds.vision.RandomHorizontalFlip(prob=0.5) ] trans += [ - ds.vision.c_transforms.Resize((224, 224)), - ds.vision.c_transforms.Rescale(1.0 / 255.0, 0.0), - ds.vision.c_transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Resize((224, 224)), + ds.vision.Rescale(1.0 / 255.0, 0.0), + ds.vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=THREAD_NUM) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=THREAD_NUM) @@ -97,21 +97,21 @@ def create_dataset2(dataset_path, do_train, device_num=1, batch_size=32, target= # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=THREAD_NUM) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=THREAD_NUM) diff --git a/official/cv/mobilenetv2/src/dataset.py b/official/cv/mobilenetv2/src/dataset.py index 6149458d669bfadd82a67f734383a8b0491b577a..8d09a7e8c557b134164201b170d0904c11f249e4 100644 --- a/official/cv/mobilenetv2/src/dataset.py +++ b/official/cv/mobilenetv2/src/dataset.py @@ -52,24 +52,24 @@ def create_dataset(dataset_path, do_train, config, enable_cache=False, cache_ses buffer_size = 1000 # define map operations - decode_op = ds.vision.c_transforms.Decode() - resize_crop_op = ds.vision.c_transforms.RandomCropDecodeResize(resize_height, - scale=(0.08, 1.0), ratio=(0.75, 1.333)) - horizontal_flip_op = ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) - - resize_op = ds.vision.c_transforms.Resize((256, 256)) - center_crop = ds.vision.c_transforms.CenterCrop(resize_width) - rescale_op = ds.vision.c_transforms.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) - normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - change_swap_op = ds.vision.c_transforms.HWC2CHW() + decode_op = ds.vision.Decode() + resize_crop_op = ds.vision.RandomCropDecodeResize(resize_height, + scale=(0.08, 1.0), ratio=(0.75, 1.333)) + horizontal_flip_op = ds.vision.RandomHorizontalFlip(prob=0.5) + + resize_op = ds.vision.Resize((256, 256)) + center_crop = ds.vision.CenterCrop(resize_width) + rescale_op = ds.vision.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) + normalize_op = ds.vision.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], + std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) + change_swap_op = ds.vision.HWC2CHW() if do_train: trans = [resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op] else: trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=num_workers) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_workers) diff --git a/official/cv/mobilenetv3/src/dataset.py b/official/cv/mobilenetv3/src/dataset.py index 8061ca3eb778e05ba789893eb6293a5de98409fc..e29ab6767ed280d08bb27fcf1a49f6f64dba913f 100644 --- a/official/cv/mobilenetv3/src/dataset.py +++ b/official/cv/mobilenetv3/src/dataset.py @@ -49,24 +49,24 @@ def create_dataset(dataset_path, do_train, config, device_target, batch_size=32, buffer_size = 1000 # define map operations - decode_op = ds.vision.c_transforms.Decode() - resize_crop_op = ds.vision.c_transforms.RandomCropDecodeResize(resize_height, - scale=(0.08, 1.0), ratio=(0.75, 1.333)) - horizontal_flip_op = ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) - - resize_op = ds.vision.c_transforms.Resize(256) - center_crop = ds.vision.c_transforms.CenterCrop(resize_width) - rescale_op = ds.vision.c_transforms.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) - normalize_op = ds.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - change_swap_op = ds.vision.c_transforms.HWC2CHW() + decode_op = ds.vision.Decode() + resize_crop_op = ds.vision.RandomCropDecodeResize(resize_height, + scale=(0.08, 1.0), ratio=(0.75, 1.333)) + horizontal_flip_op = ds.vision.RandomHorizontalFlip(prob=0.5) + + resize_op = ds.vision.Resize(256) + center_crop = ds.vision.CenterCrop(resize_width) + rescale_op = ds.vision.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) + normalize_op = ds.vision.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], + std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) + change_swap_op = ds.vision.HWC2CHW() if do_train: trans = [resize_crop_op, horizontal_flip_op, rescale_op, normalize_op, change_swap_op] else: trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) @@ -99,24 +99,24 @@ def create_dataset_cifar(dataset_path, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCrop((32, 32), (4, 4, 4, 4)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), - ds.vision.c_transforms.Resize((224, 224)), - ds.vision.c_transforms.Rescale(1.0 / 255.0, 0.0), - ds.vision.c_transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), - ds.vision.c_transforms.CutOut(112), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCrop((32, 32), (4, 4, 4, 4)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), + ds.vision.Resize((224, 224)), + ds.vision.Rescale(1.0 / 255.0, 0.0), + ds.vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), + ds.vision.CutOut(112), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Resize((224, 224)), - ds.vision.c_transforms.Rescale(1.0 / 255.0, 0.0), - ds.vision.c_transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Resize((224, 224)), + ds.vision.Rescale(1.0 / 255.0, 0.0), + ds.vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=type_cast_op, input_columns="label", diff --git a/official/cv/nasnet/src/dataset.py b/official/cv/nasnet/src/dataset.py index efa36ab28215ea013ac6051a1d88f6181020d3f1..63b32b9f65f7f6039381da5a6c25a029a7fd0d28 100644 --- a/official/cv/nasnet/src/dataset.py +++ b/official/cv/nasnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ Data operations, will be used in train.py and eval.py import mindspore import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, rank, group_size, num_parallel_workers=8, batch_size=128, diff --git a/official/cv/nima/src/dataset.py b/official/cv/nima/src/dataset.py index be1be6b7f9418a2fda175c166dc914023cac60a8..35c480c19c650c86a865b8e1652adc3fe395633b 100644 --- a/official/cv/nima/src/dataset.py +++ b/official/cv/nima/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import numpy as np import mindspore import mindspore.dataset as ds from mindspore.dataset.vision import Inter -from mindspore.dataset.vision import c_transforms as v_ct -from mindspore.dataset.transforms import c_transforms as t_ct +from mindspore.dataset.vision import transforms as v_ct +from mindspore.dataset.transforms import transforms as t_ct class Dataset: diff --git a/official/cv/patchcore/preprocess.py b/official/cv/patchcore/preprocess.py index a4f35c46f1343b39c8adb3cdf7b906f8fd442005..03586d845d2d3e5ab21a223d7451eb72d0b6956c 100644 --- a/official/cv/patchcore/preprocess.py +++ b/official/cv/patchcore/preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,10 +20,10 @@ from pathlib import Path import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as vision from mindspore.common import set_seed -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from mindspore.dataset.vision import Inter from src.config import _C as cfg @@ -89,15 +89,15 @@ def createDataset(dataset_path, category): std = cfg.std_dft data_transforms = Compose([ - py_vision.Resize((256, 256), interpolation=Inter.ANTIALIAS), - py_vision.CenterCrop(224), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.Resize((256, 256), interpolation=Inter.ANTIALIAS), + vision.CenterCrop(224), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ]) gt_transforms = Compose([ - py_vision.Resize((256, 256)), - py_vision.CenterCrop(224), - py_vision.ToTensor() + vision.Resize((256, 256)), + vision.CenterCrop(224), + vision.ToTensor() ]) train_json_path, test_json_path = createDatasetJson(dataset_path, category, data_transforms, gt_transforms) diff --git a/official/cv/patchcore/src/dataset.py b/official/cv/patchcore/src/dataset.py index c8c4b48a94f2051bb844cb21cf991d47ebfd10d2..29a05d788cc6c2b62fe41cd1e9f89b011d7d1739 100644 --- a/official/cv/patchcore/src/dataset.py +++ b/official/cv/patchcore/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,9 +20,9 @@ from pathlib import Path import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from mindspore.dataset.vision import Inter from PIL import Image @@ -137,15 +137,15 @@ def createDataset(dataset_path, category): std = [0.229, 0.224, 0.225] data_transforms = Compose([ - py_vision.Resize((256, 256), interpolation=Inter.ANTIALIAS), - py_vision.CenterCrop(224), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.Resize((256, 256), interpolation=Inter.ANTIALIAS), + vision.CenterCrop(224), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ]) gt_transforms = Compose([ - py_vision.Resize((256, 256)), - py_vision.CenterCrop(224), - py_vision.ToTensor() + vision.Resize((256, 256)), + vision.CenterCrop(224), + vision.ToTensor() ]) train_json_path, test_json_path = createDatasetJson(dataset_path, category, data_transforms, gt_transforms) diff --git a/official/cv/posenet/src/dataset.py b/official/cv/posenet/src/dataset.py index c9454fadc4150a5313c21f6b328fc06a0abe8704..573d189925fc329c249fe9e3cd8f8d6db3700db3 100644 --- a/official/cv/posenet/src/dataset.py +++ b/official/cv/posenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import numpy as np from mindspore.mindrecord import FileWriter import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C class Dataset: """dataset read""" diff --git a/official/cv/psenet/src/dataset.py b/official/cv/psenet/src/dataset.py index 8c88120b714618b7eba47be3da9b769733a2858e..e0e0f94e7f1bc96aad912f5d451cd9485df5826d 100644 --- a/official/cv/psenet/src/dataset.py +++ b/official/cv/psenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,7 +23,7 @@ import numpy as np import Polygon as plg import pyclipper import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_transforms +import mindspore.dataset.vision as vision from src.model_utils.config import config __all__ = ['train_dataset_creator', 'test_dataset_creator'] @@ -255,13 +255,13 @@ class TrainDataset: if self.is_transform: img = Image.fromarray(img) img = img.convert('RGB') - img = py_transforms.RandomColorAdjust(brightness=32.0 / 255, saturation=0.5)(img) + img = vision.RandomColorAdjust(brightness=32.0 / 255, saturation=0.5)(img) else: img = Image.fromarray(img) img = img.convert('RGB') - img = py_transforms.ToTensor()(img) - img = py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img) + img = vision.ToTensor()(img) + img = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False)(img) gt_text = gt_text.astype(np.float32) gt_kernels = gt_kernels.astype(np.float32) @@ -306,8 +306,8 @@ def IC15_TEST_Generator(): img_resized = Image.fromarray(img_resized) img_resized = img_resized.convert('RGB') - img_resized = py_transforms.ToTensor()(img_resized) - img_resized = py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img_resized) + img_resized = vision.ToTensor()(img_resized) + img_resized = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False)(img_resized) yield img, img_resized, img_name diff --git a/official/cv/pvnet/eval.py b/official/cv/pvnet/eval.py index b687eee4a58a2b0575bed71819108437ac47eeae..52c273dc3212fa1e5153aadb9e724d144a144343 100644 --- a/official/cv/pvnet/eval.py +++ b/official/cv/pvnet/eval.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,7 @@ import time import numpy as np import mindspore -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.transforms as C from mindspore import context from model_utils.config import config as cfg @@ -82,9 +81,9 @@ def test(args): pose = test_db[idx]['RT'].copy() rgb = read_rgb_np(rgb_path) - rgb = P.ToTensor()(rgb) + rgb = C.ToTensor()(rgb) rgb = C.TypeCast(mindspore.dtype.float32)(rgb) - rgb = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(rgb) + rgb = C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False)(rgb) rgb = np.expand_dims(rgb, axis=0) rgb = mindspore.Tensor(rgb) diff --git a/official/cv/pvnet/src/dataset.py b/official/cv/pvnet/src/dataset.py index 4a3d59580d75461863fa80eec47d728eb544a761..29ee73acd58de4bd3f4175a7027ad3b55b8865a3 100644 --- a/official/cv/pvnet/src/dataset.py +++ b/official/cv/pvnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,9 +18,8 @@ import os import cv2 import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as CV -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as CV import numpy as np from model_utils.config import config as cfg @@ -242,9 +241,9 @@ def create_dataset(cls_list, batch_size=16, workers=16, devices=1, rank=0, multi CV.RandomColorAdjust( cfg.brightness, cfg.contrast, cfg.saturation, cfg.hue), - P.ToTensor(), # 0~255 HWC to 0~1 CHW + C.ToTensor(), # 0~255 HWC to 0~1 CHW C.TypeCast(mstype.float32), - P.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), + C.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False), ]) mask_transforms = [ diff --git a/official/cv/pwcnet/src/flyingchairs.py b/official/cv/pwcnet/src/flyingchairs.py index c1d68d031b75c5f3f22723204d05b1374e57a793..fdcefc667a3d1581ea8458355bff78b3d3ea8762 100644 --- a/official/cv/pwcnet/src/flyingchairs.py +++ b/official/cv/pwcnet/src/flyingchairs.py @@ -18,8 +18,8 @@ from glob import glob import mindspore.dataset as de import mindspore -import mindspore.dataset.vision.py_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as V +import mindspore.dataset.transforms as T import src.common as common import src.transforms as transforms @@ -131,16 +131,16 @@ class FlyingChairs(): # photometric_augmentations if augmentations: self._photometric_transform = transforms.ConcatTransformSplitChainer([ - CV.ToPIL(), - CV.RandomColorAdjust(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), - CV.ToTensor(), + V.ToPIL(), + V.RandomColorAdjust(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), + V.ToTensor(), transforms.RandomGamma(min_gamma=0.7, max_gamma=1.5, clip_image=True) ]) else: self._photometric_transform = transforms.ConcatTransformSplitChainer([ - CV.ToPIL(), - CV.ToTensor(), + V.ToPIL(), + V.ToTensor(), ]) def __getitem__(self, index): @@ -176,9 +176,9 @@ def FlyingChairsTrain(dir_root, augmentations, dstype, batchsize, num_parallel_w shuffle=True, num_shards=world_size, shard_id=local_rank) # apply map operations on images - de_dataset = de_dataset.map(input_columns="im1", operations=C.TypeCast(mindspore.float32)) - de_dataset = de_dataset.map(input_columns="im2", operations=C.TypeCast(mindspore.float32)) - de_dataset = de_dataset.map(input_columns="flo", operations=C.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="im1", operations=T.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="im2", operations=T.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="flo", operations=T.TypeCast(mindspore.float32)) de_dataset = de_dataset.batch(batchsize, drop_remainder=True) return de_dataset, dataset_len diff --git a/official/cv/pwcnet/src/sintel.py b/official/cv/pwcnet/src/sintel.py index 0c7b6caeec579877cdafea49221144cbdef908e0..cce038c8629162916b7165e0111ce78507d80bc7 100644 --- a/official/cv/pwcnet/src/sintel.py +++ b/official/cv/pwcnet/src/sintel.py @@ -19,8 +19,8 @@ import numpy as np import mindspore.dataset as de import mindspore -import mindspore.dataset.vision.py_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as V +import mindspore.dataset.transforms as T import src.common as common import src.transforms as transforms @@ -129,16 +129,16 @@ class Sintel(): # photometric_augmentations if augmentations: self._photometric_transform = transforms.ConcatTransformSplitChainer([ - CV.ToPIL(), - CV.RandomColorAdjust(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), - CV.ToTensor(), + V.ToPIL(), + V.RandomColorAdjust(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), + V.ToTensor(), transforms.RandomGamma(min_gamma=0.7, max_gamma=1.5, clip_image=True) ]) else: self._photometric_transform = transforms.ConcatTransformSplitChainer([ - CV.ToPIL(), - CV.ToTensor(), + V.ToPIL(), + V.ToTensor(), ]) self._size = len(self._image_list) @@ -182,8 +182,8 @@ def SintelTraining(dir_root, augmentations, imgtype, dstype, batchsize, num_para shuffle=True, num_shards=world_size, shard_id=local_rank) # apply map operations on images - de_dataset = de_dataset.map(input_columns="im1", operations=C.TypeCast(mindspore.float32)) - de_dataset = de_dataset.map(input_columns="im2", operations=C.TypeCast(mindspore.float32)) - de_dataset = de_dataset.map(input_columns="flo", operations=C.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="im1", operations=T.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="im2", operations=T.TypeCast(mindspore.float32)) + de_dataset = de_dataset.map(input_columns="flo", operations=T.TypeCast(mindspore.float32)) de_dataset = de_dataset.batch(batchsize, drop_remainder=True) return de_dataset, dataset_len diff --git a/official/cv/resnet/gpu_resnet_benchmark.py b/official/cv/resnet/gpu_resnet_benchmark.py index 01e3be0452f3c4a69bf69c26cfeccca887260722..094301e024b401a385f148cc565f4a6e04b02df2 100644 --- a/official/cv/resnet/gpu_resnet_benchmark.py +++ b/official/cv/resnet/gpu_resnet_benchmark.py @@ -90,28 +90,28 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target=" std = [0.229 * 255, 0.224 * 255, 0.225 * 255] # define map operations - normalize_op = ds.vision.c_transforms.Normalize(mean=mean, std=std) + normalize_op = ds.vision.Normalize(mean=mean, std=std) if dtype == "fp16": if config.eval: x_dtype = "float32" else: x_dtype = "float16" - normalize_op = ds.vision.c_transforms.NormalizePad(mean=mean, std=std, dtype=x_dtype) + normalize_op = ds.vision.NormalizePad(mean=mean, std=std, dtype=x_dtype) if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), normalize_op, ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), normalize_op, ] if dtype == "fp32": - trans.append(ds.vision.c_transforms.HWC2CHW()) + trans.append(ds.vision.HWC2CHW()) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=map_num_parallel_worker) # apply batch operations data_set = data_set.batch(batch_size, drop_remainder=True, num_parallel_workers=batch_num_parallel_worker) diff --git a/official/cv/resnet/src/dataset.py b/official/cv/resnet/src/dataset.py index a13626f188db0d7ea5da443f8bb902f31e670c91..7cf8bc978523e1bb876c872cb71577dc1d5a6c41 100644 --- a/official/cv/resnet/src/dataset.py +++ b/official/cv/resnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -50,18 +50,18 @@ def create_dataset1(dataset_path, do_train, batch_size=32, train_image_size=224, trans = [] if do_train: trans += [ - ds.vision.c_transforms.RandomCrop((32, 32), (4, 4, 4, 4)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) + ds.vision.RandomCrop((32, 32), (4, 4, 4, 4)), + ds.vision.RandomHorizontalFlip(prob=0.5) ] trans += [ - ds.vision.c_transforms.Resize((train_image_size, train_image_size)), - ds.vision.c_transforms.Rescale(1.0 / 255.0, 0.0), - ds.vision.c_transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Resize((train_image_size, train_image_size)), + ds.vision.Rescale(1.0 / 255.0, 0.0), + ds.vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=get_num_parallel_workers(8)) @@ -117,18 +117,18 @@ def create_dataset2(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5) + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5) ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size) + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size) ] - trans_norm = [ds.vision.c_transforms.Normalize(mean=mean, std=std), ds.vision.c_transforms.HWC2CHW()] + trans_norm = [ds.vision.Normalize(mean=mean, std=std), ds.vision.HWC2CHW()] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) if device_num == 1: trans_work_num = 24 else: @@ -190,21 +190,21 @@ def create_dataset_pynative(dataset_path, do_train, batch_size=32, train_image_s # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=4) # only enable cache for eval @@ -257,21 +257,21 @@ def create_dataset3(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(rank_id / (rank_id + 1)), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(rank_id / (rank_id + 1)), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=get_num_parallel_workers(8)) # only enable cache for eval @@ -326,21 +326,21 @@ def create_dataset4(dataset_path, do_train, batch_size=32, train_image_size=224, # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(train_image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(292), - ds.vision.c_transforms.CenterCrop(eval_image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(292), + ds.vision.CenterCrop(eval_image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=get_num_parallel_workers(12)) # only enable cache for eval if do_train: diff --git a/official/cv/resnet/src/dataset_infer.py b/official/cv/resnet/src/dataset_infer.py index 5d0a655e88ecfda28ad455515ba4fc17976b3b6d..ce032b1db63c91a8d622b41889b32dc65d5d1ed8 100644 --- a/official/cv/resnet/src/dataset_infer.py +++ b/official/cv/resnet/src/dataset_infer.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -130,21 +130,21 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target=" # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) @@ -202,21 +202,21 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(rank_id / (rank_id + 1)), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(rank_id / (rank_id + 1)), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(256), - ds.vision.c_transforms.CenterCrop(image_size), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(256), + ds.vision.CenterCrop(image_size), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8) @@ -271,21 +271,21 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target= # define map operations if do_train: trans = [ - ds.vision.c_transforms.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), - ds.vision.c_transforms.RandomHorizontalFlip(prob=0.5), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + ds.vision.RandomHorizontalFlip(prob=0.5), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] else: trans = [ - ds.vision.c_transforms.Decode(), - ds.vision.c_transforms.Resize(292), - ds.vision.c_transforms.CenterCrop(256), - ds.vision.c_transforms.Normalize(mean=mean, std=std), - ds.vision.c_transforms.HWC2CHW() + ds.vision.Decode(), + ds.vision.Resize(292), + ds.vision.CenterCrop(256), + ds.vision.Normalize(mean=mean, std=std), + ds.vision.HWC2CHW() ] - type_cast_op = ds.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = ds.transforms.transforms.TypeCast(ms.int32) data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12) data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12) if do_train: diff --git a/official/cv/resnet_thor/src/dataset.py b/official/cv/resnet_thor/src/dataset.py index 443817150b07a9eb7e4adc81af33c41b3d648735..ae1dbee0a06db4d75b87465a731c51ebd0196ed7 100644 --- a/official/cv/resnet_thor/src/dataset.py +++ b/official/cv/resnet_thor/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/official/cv/resnext/src/dataset.py b/official/cv/resnext/src/dataset.py index d7f5b4678e84b39b84da100de96bed1a9988d0a7..a3aba86c3925f366f296340b6bf1e3ce7345f805 100644 --- a/official/cv/resnext/src/dataset.py +++ b/official/cv/resnext/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os from PIL import Image, ImageFile from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C from src.utils.sampler import DistributedSampler ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/official/cv/retinanet/src/dataset.py b/official/cv/retinanet/src/dataset.py index c5105e9c4ba047ec2780deebd4c6a2ef2180c0b1..312c35d89340670471e1b192944e9a515399c523 100644 --- a/official/cv/retinanet/src/dataset.py +++ b/official/cv/retinanet/src/dataset.py @@ -23,7 +23,7 @@ import xml.etree.ElementTree as et import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from src.model_utils.config import config from .box_utils import jaccard_numpy, retinanet_bboxes_encode diff --git a/official/cv/se_resnext50/src/dataset.py b/official/cv/se_resnext50/src/dataset.py index 4ce7b43c00efac7641a909d4ec4bdeb2feb72a76..9fc23bc1d62f32aaf66f7cf0602f1b6376876ba2 100644 --- a/official/cv/se_resnext50/src/dataset.py +++ b/official/cv/se_resnext50/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os from PIL import Image, ImageFile from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C from src.utils.sampler import DistributedSampler ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/official/cv/semantic_human_matting/src/dataset.py b/official/cv/semantic_human_matting/src/dataset.py index 31e97d1faff85c9358ff3e948873b6237554075e..ac7202e9d2b5f63ce891f0b9786d8a00377bbf38 100644 --- a/official/cv/semantic_human_matting/src/dataset.py +++ b/official/cv/semantic_human_matting/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import cv2 import numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import dtype as mstype diff --git a/official/cv/shufflenetv1/src/dataset.py b/official/cv/shufflenetv1/src/dataset.py index 48588b5abb147dcc6a2bee02d2dc4d2d20460ee0..6656d3503df49813bbdad5b2de1669389be60b7f 100644 --- a/official/cv/shufflenetv1/src/dataset.py +++ b/official/cv/shufflenetv1/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ from src.model_utils.config import config import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, device_num=1, rank=0): diff --git a/official/cv/shufflenetv2/src/dataset.py b/official/cv/shufflenetv2/src/dataset.py index 0fbe28daaa97077239dd5744d935848db5ec88b4..96b8835a93f5443ce75ac3238ba385173e457484 100644 --- a/official/cv/shufflenetv2/src/dataset.py +++ b/official/cv/shufflenetv2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C class toBGR(): def __call__(self, img): diff --git a/official/cv/simclr/src/dataset.py b/official/cv/simclr/src/dataset.py index 1b14f0a5eaca509b42adcf218779e3a655ad561d..ef913335924ee3facfa73fc08a1c2a1b5f2c5c58 100644 --- a/official/cv/simclr/src/dataset.py +++ b/official/cv/simclr/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,9 +17,8 @@ create train or eval dataset. """ import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.vision import Inter import cv2 import numpy as np @@ -70,8 +69,8 @@ def create_dataset(args, dataset_mode, repeat_num=1): color_jitter = C.RandomColorAdjust(0.8 * scale, 0.8 * scale, 0.8 * scale, 0.2 * scale) trans += [C2.RandomApply([color_jitter], prob=0.8)] if args.use_color_gray: - trans += [py_vision.ToPIL(), - py_vision.RandomGrayscale(prob=0.2), + trans += [C.ToPIL(), + C.RandomGrayscale(prob=0.2), np.array] # need to convert PIL image to a NumPy array to pass it to C++ operation if args.use_blur: trans += [C2.RandomApply([gaussian_blur], prob=0.8)] diff --git a/official/cv/simple_pose/src/dataset.py b/official/cv/simple_pose/src/dataset.py index 35b85ba240ea82cce6d415ae1891ad5564072210..9e8bbc74198cbd244c5b0cf89b86fa506f9118c2 100644 --- a/official/cv/simple_pose/src/dataset.py +++ b/official/cv/simple_pose/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.vision as V_C from src.utils.transform import fliplr_joints, get_affine_transform, affine_transform diff --git a/official/cv/sphereface/src/datasets/classification.py b/official/cv/sphereface/src/datasets/classification.py index c5bc2f984822de5bcd0ac3db1541100d7f042dc4..3d9c04eaba70e79e715949e04125ce485d78e6c9 100644 --- a/official/cv/sphereface/src/datasets/classification.py +++ b/official/cv/sphereface/src/datasets/classification.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,8 +22,8 @@ import os from PIL import Image, ImageFile from mindspore import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as vision_C -import mindspore.dataset.transforms.c_transforms as normal_C +import mindspore.dataset.vision as vision_C +import mindspore.dataset.transforms as normal_C from src.datasets.sampler import DistributedSampler from src.model_utils.matlab_cp2tform import get_similarity_transform_for_cv2 import cv2 diff --git a/official/cv/squeezenet/src/dataset.py b/official/cv/squeezenet/src/dataset.py index ac70267a35382f17210c1dd30efc28619e1968ef..407091415d7651ff17df719872a7d03b6571c26d 100644 --- a/official/cv/squeezenet/src/dataset.py +++ b/official/cv/squeezenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import multiprocessing import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/official/cv/ssd/src/dataset.py b/official/cv/ssd/src/dataset.py index 11a1945e2c8990629af65852fb351ec2195db910..a79f605f59d21d3877511c82eddb27b15ee7173d 100644 --- a/official/cv/ssd/src/dataset.py +++ b/official/cv/ssd/src/dataset.py @@ -398,12 +398,12 @@ def create_ssd_dataset(mindrecord_file, batch_size=32, device_num=1, rank=0, num_parallel_workers = cores ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num, shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training) - decode = de.vision.c_transforms.Decode() + decode = de.vision.Decode() ds = ds.map(operations=decode, input_columns=["image"]) - change_swap_op = de.vision.c_transforms.HWC2CHW() - normalize_op = de.vision.c_transforms.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], - std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) - color_adjust_op = de.vision.c_transforms.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) + change_swap_op = de.vision.HWC2CHW() + normalize_op = de.vision.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], + std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) + color_adjust_op = de.vision.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4) compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training)) if is_training: output_columns = ["image", "box", "label", "num_match"] diff --git a/official/cv/ssim-ae/src/dataset.py b/official/cv/ssim-ae/src/dataset.py index 54a415dc727bb42932c5afad8dd31b506f3b5223..aa783b2b645cfed369ca808234e7df078cedb7a1 100644 --- a/official/cv/ssim-ae/src/dataset.py +++ b/official/cv/ssim-ae/src/dataset.py @@ -20,7 +20,7 @@ import numpy as np import cv2 import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as c_trans +import mindspore.dataset.vision as c_trans from model_utils.config import config as cfg from src.utils import read_img, get_file_list diff --git a/official/cv/tinydarknet/src/dataset.py b/official/cv/tinydarknet/src/dataset.py index cadeb0834d6f43495074c7304183a02b5ead2659..48cf893684a9be30c328d2ff6d83e765e7348c0b 100644 --- a/official/cv/tinydarknet/src/dataset.py +++ b/official/cv/tinydarknet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,8 +20,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.communication.management import init, get_rank from src.model_utils.config import config as imagenet_cfg diff --git a/official/cv/unet/src/data_loader.py b/official/cv/unet/src/data_loader.py index 494c40643951d83272c0c11e3ba59bf241365681..16cd33e04c309011d06bfdc502a6668ab606b7ef 100644 --- a/official/cv/unet/src/data_loader.py +++ b/official/cv/unet/src/data_loader.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import cv2 import numpy as np from PIL import Image, ImageSequence import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as c_vision +import mindspore.dataset.vision as c_vision from mindspore.dataset.vision.utils import Inter from mindspore.communication.management import get_rank, get_group_size diff --git a/official/cv/unet3d/src/dataset.py b/official/cv/unet3d/src/dataset.py index b3b828e3c04fe16bb5db08f2472af49e39959d48..d2165808b59f44d92ab8e5ffbcdba6c0f24702f0 100644 --- a/official/cv/unet3d/src/dataset.py +++ b/official/cv/unet3d/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import glob import numpy as np import mindspore.dataset as ds -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from src.model_utils.config import config from src.transform import Dataset, ExpandChannel, LoadData, Orientation, ScaleIntensityRange, RandomCropSamples, OneHot diff --git a/official/cv/vgg16/src/dataset.py b/official/cv/vgg16/src/dataset.py index 6fb95f9ac1080cfee23bf3d36df9fbbd38cfcef0..013205eb948d16297e1aeb75e8473386b872702e 100644 --- a/official/cv/vgg16/src/dataset.py +++ b/official/cv/vgg16/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os from PIL import Image, ImageFile from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.utils.sampler import DistributedSampler ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/official/cv/vit/src/dataset.py b/official/cv/vit/src/dataset.py index 305faebc2483ae1b917ecdb57c98a87b73c55929..cd63da9b100c91dcac3b7cce7a10d31df7247778 100644 --- a/official/cv/vit/src/dataset.py +++ b/official/cv/vit/src/dataset.py @@ -22,9 +22,8 @@ import numpy as np import mindspore as ms import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.vision.utils import Inter from .autoaugment import ImageNetPolicy @@ -107,7 +106,7 @@ def create_dataset(dataset_path, ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] diff --git a/official/cv/warpctc/src/dataset.py b/official/cv/warpctc/src/dataset.py index c5834880545fd75109e206f4fbe1396c4eae5ebd..08eb865907facef35841683a31156a381f74037b 100644 --- a/official/cv/warpctc/src/dataset.py +++ b/official/cv/warpctc/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,8 +20,8 @@ import numpy as np from PIL import Image import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as c -import mindspore.dataset.vision.c_transforms as vc +import mindspore.dataset.transforms as c +import mindspore.dataset.vision as vc from src.model_utils.config import config diff --git a/official/cv/xception/src/dataset.py b/official/cv/xception/src/dataset.py index adcc10f872043439af6510a0ee6c5c5568159879..d5b76f8e1c49a197cd61fad3a73be3709a116c64 100644 --- a/official/cv/xception/src/dataset.py +++ b/official/cv/xception/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/official/cv/yolov3_darknet53/src/yolo_dataset.py b/official/cv/yolov3_darknet53/src/yolo_dataset.py index 684b1b6eb86d317ef700c91786f3744b0f689c6c..82f06c7f4166b91c9f6c50b4e991f1b004bb533e 100644 --- a/official/cv/yolov3_darknet53/src/yolo_dataset.py +++ b/official/cv/yolov3_darknet53/src/yolo_dataset.py @@ -156,7 +156,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, device_num, rank, yolo_dataset = COCOYoloDataset(root=image_dir, ann_file=anno_path, filter_crowd_anno=filter_crowd, remove_images_without_annotations=remove_empty_anno, is_training=is_training) - hwc_to_chw = ds.vision.c_transforms.HWC2CHW() + hwc_to_chw = ds.vision.HWC2CHW() config.dataset_size = len(yolo_dataset) cores = multiprocessing.cpu_count() @@ -168,12 +168,12 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, device_num, rank, "gt_box1", "gt_box2", "gt_box3"] if device_num != 8: dataset = ds.GeneratorDataset(yolo_dataset, column_names=dataset_column_names, sampler=distributed_sampler) - dataset = dataset.map(operations=ds.vision.c_transforms.Decode(), input_columns=["image"]) + dataset = dataset.map(operations=ds.vision.Decode(), input_columns=["image"]) dataset = dataset.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names, num_parallel_workers=min(32, num_parallel_workers), drop_remainder=True) else: dataset = ds.GeneratorDataset(yolo_dataset, column_names=dataset_column_names, sampler=distributed_sampler) - dataset = dataset.map(operations=ds.vision.c_transforms.Decode(), input_columns=["image"]) + dataset = dataset.map(operations=ds.vision.Decode(), input_columns=["image"]) dataset = dataset.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names, num_parallel_workers=min(8, num_parallel_workers), drop_remainder=True) else: diff --git a/official/cv/yolov3_resnet18/src/dataset.py b/official/cv/yolov3_resnet18/src/dataset.py index 4a2651957a34fe8f8f4c453104b8270818a266ee..e5d3f391d2f5a2d4ee6e7e84eae28edd51f66695 100644 --- a/official/cv/yolov3_resnet18/src/dataset.py +++ b/official/cv/yolov3_resnet18/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,7 +22,7 @@ import numpy as np from PIL import Image import mindspore.dataset as de from mindspore.mindrecord import FileWriter -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.config import ConfigYOLOV3ResNet18 iter_cnt = 0 diff --git a/official/cv/yolov4/src/yolo_dataset.py b/official/cv/yolov4/src/yolo_dataset.py index 1ddca778206713e47084a9ac7ad1a7e93857d417..f01e55021f6f4f233ff6da1bd9ff28c8692ad927 100644 --- a/official/cv/yolov4/src/yolo_dataset.py +++ b/official/cv/yolov4/src/yolo_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import numpy as np from PIL import Image from pycocotools.coco import COCO import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV from model_utils.config import config from src.distributed_sampler import DistributedSampler from src.transforms import reshape_fn, MultiScaleTrans diff --git a/official/cv/yolov5/src/transforms.py b/official/cv/yolov5/src/transforms.py index 928dbab2c74a5fcbedee958ab43ad1b0b618badb..ac2352f2401202be26f71fb53699d5960af60698 100644 --- a/official/cv/yolov5/src/transforms.py +++ b/official/cv/yolov5/src/transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import copy import numpy as np from PIL import Image import cv2 -import mindspore.dataset as ds +import mindspore.dataset.vision as vision def _rand(a=0., b=1.): @@ -524,7 +524,7 @@ class MultiScaleTrans: def __call__(self, img, anno, input_size, mosaic_flag): if mosaic_flag[0] == 0: - img = ds.vision.py_transforms.Decode()(img) + img = vision.Decode(True)(img) img, anno = preprocess_fn(img, anno, self.config, input_size, self.device_num) return img, anno, np.array(img.shape[0:2]) diff --git a/official/cv/yolov5/src/yolo_dataset.py b/official/cv/yolov5/src/yolo_dataset.py index f4c602c5123df740f27ed7fd12b81dbb2b309286..a0b8dbf112a6111398641933dcf37c5a521979dc 100644 --- a/official/cv/yolov5/src/yolo_dataset.py +++ b/official/cv/yolov5/src/yolo_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -240,7 +240,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, device_num, rank, remove_images_without_annotations=remove_empty_anno, is_training=is_training) distributed_sampler = DistributedSampler(len(yolo_dataset), device_num, rank, shuffle=shuffle) yolo_dataset.size = len(distributed_sampler) - hwc_to_chw = ds.vision.c_transforms.HWC2CHW() + hwc_to_chw = ds.vision.HWC2CHW() config.dataset_size = len(yolo_dataset) cores = multiprocessing.cpu_count() @@ -267,7 +267,7 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, device_num, rank, num_parallel_workers=min(4, num_parallel_workers), python_multiprocessing=False) mean = [m * 255 for m in [0.485, 0.456, 0.406]] std = [s * 255 for s in [0.229, 0.224, 0.225]] - dataset = dataset.map([ds.vision.c_transforms.Normalize(mean, std), hwc_to_chw], + dataset = dataset.map([ds.vision.Normalize(mean, std), hwc_to_chw], num_parallel_workers=min(4, num_parallel_workers)) def concatenate(images): diff --git a/official/nlp/bert/src/dataset.py b/official/nlp/bert/src/dataset.py index 2864d3e8c62a63ff911e0bbe540c80de9945471e..ece989012fe18432f826742ab3a2840ea22c89ec 100644 --- a/official/nlp/bert/src/dataset.py +++ b/official/nlp/bert/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import math import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger diff --git a/official/nlp/bert/src/finetune_data_preprocess.py b/official/nlp/bert/src/finetune_data_preprocess.py index 44cd375f7ad072990bc1d199ef8251ee7561a161..3f9f682b56b2077fbb2ed8e749a22fb0578b6009 100644 --- a/official/nlp/bert/src/finetune_data_preprocess.py +++ b/official/nlp/bert/src/finetune_data_preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -25,7 +25,7 @@ from lxml import etree import mindspore.common.dtype as mstype import mindspore.dataset as ds import mindspore.dataset.text as text -import mindspore.dataset.transforms.c_transforms as ops +import mindspore.dataset.transforms as ops from utils import convert_labels_to_index diff --git a/official/nlp/bert_thor/pretrain_eval.py b/official/nlp/bert_thor/pretrain_eval.py index 73c2369053a3ec2cfd02ab778fc3596df67f28d0..a4f824d7308e0572a80763522da8a11e310b67b9 100644 --- a/official/nlp/bert_thor/pretrain_eval.py +++ b/official/nlp/bert_thor/pretrain_eval.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ from src.evaluation_config import cfg, bert_net_cfg import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.nn as nn from mindspore import context from mindspore.common.parameter import Parameter diff --git a/official/nlp/bert_thor/src/dataset.py b/official/nlp/bert_thor/src/dataset.py index 8e6dccec081678863437bdb94e1c46fd1054d09d..620b668078ac249a4746990af11a05b7a233c356 100644 --- a/official/nlp/bert_thor/src/dataset.py +++ b/official/nlp/bert_thor/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ Data operations, will be used in run_pretrain.py import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger from .config import cfg diff --git a/official/nlp/cpm/train.py b/official/nlp/cpm/train.py index 8ce5edc27698585eade1eb08e5414f4d3b676efb..ca9b4d249dd81673703c4758edefd8befc4e287e 100644 --- a/official/nlp/cpm/train.py +++ b/official/nlp/cpm/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -29,7 +29,7 @@ from mindspore.train.callback import TimeMonitor, ModelCheckpoint, CheckpointCon from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore.parallel import set_algo_parameters from src.cpm_train import CPMWithLoss, CPMTrainOneStepWithLossScaleCell, VirtualDatasetOneInputCell, \ diff --git a/official/nlp/dgu/src/utils.py b/official/nlp/dgu/src/utils.py index 474bd2b7e2e5b74e33275f3032f00fefd3b88f64..0d8174f4e8fd5488693c9476c567a829111da0a5 100644 --- a/official/nlp/dgu/src/utils.py +++ b/official/nlp/dgu/src/utils.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,7 +23,7 @@ import os import numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.nn as nn import mindspore.ops as P diff --git a/official/nlp/duconv/src/dataset.py b/official/nlp/duconv/src/dataset.py index be6752663dc190a2378ffdafabe77b964cefa7f9..4d8e69c99240aa1066d197b118e84ce08a73a4ec 100644 --- a/official/nlp/duconv/src/dataset.py +++ b/official/nlp/duconv/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ Data loader import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger def create_dataset(batch_size, device_num=1, rank=0, num_workers=8, do_shuffle=True, diff --git a/official/nlp/emotect/src/dataset.py b/official/nlp/emotect/src/dataset.py index 7adeac9f32b6f1c4894f4db46c0622fd3e649f80..e8be1e68fc3f93f0e384659adb00290ee1bef94d 100644 --- a/official/nlp/emotect/src/dataset.py +++ b/official/nlp/emotect/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ Data operations, will be used in run_pretrain.py """ import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def create_classification_dataset(batch_size=1, repeat_count=1, diff --git a/official/nlp/ernie/src/dataset.py b/official/nlp/ernie/src/dataset.py index 15b6c61dc68c322d8ce191c6adbe84d57ef2c305..d672304a316e6ab75dfc1a10c2e8ab69ef8ec27d 100644 --- a/official/nlp/ernie/src/dataset.py +++ b/official/nlp/ernie/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ Data operations, will be used in run_pretrain.py import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger from .config import cfg diff --git a/official/nlp/fasttext/eval.py b/official/nlp/fasttext/eval.py index d4ca9d23a407bccfcd03d09adb1ef3fcd4953430..92f28e027f3c646ab731352c3cea4443ac9c60ad 100644 --- a/official/nlp/fasttext/eval.py +++ b/official/nlp/fasttext/eval.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ from mindspore.common.tensor import Tensor from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC from mindspore import context from src.fasttext_model import FastText diff --git a/official/nlp/gnmt_v2/src/dataset/load_dataset.py b/official/nlp/gnmt_v2/src/dataset/load_dataset.py index 8af9fe84cce0c77fe6013ee8c84cf421e758af14..79a690dafcfec83c9899629e2c675d77582801ca 100644 --- a/official/nlp/gnmt_v2/src/dataset/load_dataset.py +++ b/official/nlp/gnmt_v2/src/dataset/load_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Dataset loader to feed into model.""" import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC def _load_dataset(input_files, batch_size, sink_mode=False, diff --git a/official/nlp/gpt/src/dataset.py b/official/nlp/gpt/src/dataset.py index a2b3ec6389de00a69f06d98611795147e1b44c9c..29c9fbbadc0e27990650ba18988a26213db91c9e 100644 --- a/official/nlp/gpt/src/dataset.py +++ b/official/nlp/gpt/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ Create dataset for training and evaluating import os import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.common.dtype as mstype diff --git a/official/nlp/gru/src/dataset.py b/official/nlp/gru/src/dataset.py index d63d5c2ccc643a876bff7f17f13ded95fda93a81..6de44d1c9ee31924588d8d15af57576a6ade6ffa 100644 --- a/official/nlp/gru/src/dataset.py +++ b/official/nlp/gru/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC from model_utils.config import config de.config.set_seed(1) diff --git a/official/nlp/mass/src/dataset/load_dataset.py b/official/nlp/mass/src/dataset/load_dataset.py index 879ccf41c9f88e33910bf041d494e305f8a094a1..377b6123b1655bbe5950ad829a0ed89f7b574262 100644 --- a/official/nlp/mass/src/dataset/load_dataset.py +++ b/official/nlp/mass/src/dataset/load_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Dataset loader to feed into model.""" import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC def _load_dataset(input_files, batch_size, epoch_count=1, diff --git a/official/nlp/pangu_alpha/src/dataset.py b/official/nlp/pangu_alpha/src/dataset.py index b18fd397f21ab8296f8ee30b56ee1fe1122e6b12..8e803d82d11195347f00cfd440650a152b052f39 100644 --- a/official/nlp/pangu_alpha/src/dataset.py +++ b/official/nlp/pangu_alpha/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ Create dataset for training and evaluating import os import numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.common.dtype as mstype from mindspore import context diff --git a/official/nlp/prophetnet/src/dataset/load_dataset.py b/official/nlp/prophetnet/src/dataset/load_dataset.py index e585f50b99907a016da55c31126f8a1cbf8f2cbe..84aaf94a760c3eeba081f4ac54b3499c4ba1f6cd 100644 --- a/official/nlp/prophetnet/src/dataset/load_dataset.py +++ b/official/nlp/prophetnet/src/dataset/load_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Dataset loader to feed into model.""" import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC def _load_dataset(input_files, batch_size, epoch_count=1, diff --git a/official/nlp/tinybert/src/dataset.py b/official/nlp/tinybert/src/dataset.py index 2b023f6990e0dcb84974cdd05dfee140626dcd32..62a0523c4296ba945a3d462c809a4c35ab339896 100644 --- a/official/nlp/tinybert/src/dataset.py +++ b/official/nlp/tinybert/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import os from enum import Enum import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C class DataType(Enum): diff --git a/official/nlp/transformer/eval.py b/official/nlp/transformer/eval.py index 07a30c5d6623d2ebfb21eadf75a2d329d9bb9fb1..e3e6f367f7f688c9b9d3e9c97d8117ed455054d9 100644 --- a/official/nlp/transformer/eval.py +++ b/official/nlp/transformer/eval.py @@ -23,7 +23,7 @@ from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore.train.model import Model import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC from src.transformer_model import TransformerModel from src.model_utils.config import config diff --git a/official/nlp/transformer/src/dataset.py b/official/nlp/transformer/src/dataset.py index 551639072e394269c5cfb42ead58dee6785cdd77..4728db94e0737ead8e0b69107864b167db4ab11c 100644 --- a/official/nlp/transformer/src/dataset.py +++ b/official/nlp/transformer/src/dataset.py @@ -33,7 +33,7 @@ def create_transformer_dataset(rank_size=1, rank_id=0, do_shuffle="true", datase "target_sos_ids", "target_sos_mask", "target_eos_ids", "target_eos_mask"], shuffle=(do_shuffle == "true"), num_shards=rank_size, shard_id=rank_id) - type_cast_op = de.transforms.c_transforms.TypeCast(ms.int32) + type_cast_op = de.transforms.transforms.TypeCast(ms.int32) ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids") ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask") ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids") diff --git a/research/audio/ctcmodel/src/dataset.py b/research/audio/ctcmodel/src/dataset.py index e0cc5592624ae40ccf5b019fefd79ba5ceabaff9..117a3cc9da703191b5e7b903cf188f108701fdc9 100644 --- a/research/audio/ctcmodel/src/dataset.py +++ b/research/audio/ctcmodel/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ """Dataset preprocessing.""" import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.common.dtype as mstype diff --git a/research/audio/speech_transformer/src/dataset.py b/research/audio/speech_transformer/src/dataset.py index 1ae5a5ee610eb1cd86983662da90362c721e3179..5354e39f6fe0b02469b204d4570078a2cb658608 100644 --- a/research/audio/speech_transformer/src/dataset.py +++ b/research/audio/speech_transformer/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ from pathlib import Path import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC import numpy as np from .model_utils.config import config diff --git a/research/cv/3dcnn/src/dataset.py b/research/cv/3dcnn/src/dataset.py index 0610c9b06818f4b471e4f5d53360822e93756ff8..1879601b01a2afb19c048c07feeaa26f32c38a73 100644 --- a/research/cv/3dcnn/src/dataset.py +++ b/research/cv/3dcnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ from nibabel import load as load_nii import mindspore.dataset as ds import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 def norm(image): diff --git a/research/cv/APDrawingGAN/src/data/aligned_dataset.py b/research/cv/APDrawingGAN/src/data/aligned_dataset.py index 894c6c9b755277149b389b85372671430148b323..5e912e722f19ebacae0150f69d5ba40d13a57d0d 100644 --- a/research/cv/APDrawingGAN/src/data/aligned_dataset.py +++ b/research/cv/APDrawingGAN/src/data/aligned_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import os.path import random import csv import cv2 -import mindspore.dataset.vision.py_transforms as P_VISION +import mindspore.dataset.vision as vision import mindspore.ops as ops from mindspore import Tensor from mindspore import dtype as mstype @@ -139,8 +139,8 @@ def init_AB(opt, AB_path): (opt.loadSize, opt.loadSize), Image.BICUBIC) B = AB.crop((w2, 0, w, h)).resize( (opt.loadSize, opt.loadSize), Image.BICUBIC) - A = P_VISION.ToTensor()(A) - B = P_VISION.ToTensor()(B) + A = vision.ToTensor()(A) + B = vision.ToTensor()(B) w_offset = random.randint( 0, max(0, opt.loadSize - opt.fineSize - 1)) h_offset = random.randint( @@ -151,8 +151,8 @@ def init_AB(opt, AB_path): B = B[:, h_offset:h_offset + opt.fineSize, w_offset:w_offset + opt.fineSize] - A = P_VISION.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A) - B = P_VISION.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(B) + A = vision.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)(A) + B = vision.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)(B) return A, B def regions_process(opt, regions, feats, item, A, B, input_nc, output_nc): @@ -270,7 +270,7 @@ class AlignedDataset(BaseDataset): bgdir = self.opt.bg_dir bgpath = os.path.join(bgdir, basen[:-4] + '.png') im_bg = Image.open(bgpath) - mask2 = P_VISION.ToTensor()(im_bg) # mask out background + mask2 = vision.ToTensor()(im_bg) # mask out background if flipped: mask2 = np.take(mask2, idx, axis=2) diff --git a/research/cv/APDrawingGAN/src/data/base_dataset.py b/research/cv/APDrawingGAN/src/data/base_dataset.py index cd0c4d8f4813257a50ee0acfe8acd4aeca6a38e6..f782c1cd25c3861b6227798d8c2796b4095144c4 100644 --- a/research/cv/APDrawingGAN/src/data/base_dataset.py +++ b/research/cv/APDrawingGAN/src/data/base_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,8 +15,8 @@ """base dataset""" from PIL import Image -import mindspore.dataset.vision.py_transforms as py_trans -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from mindspore.dataset.vision import Inter @@ -45,17 +45,17 @@ def get_transform(opt): transform_list = [] if opt.resize_or_crop == 'resize_and_crop': osize = [opt.loadSize, opt.fineSize] - transform_list.append(py_trans.Resize(osize, Inter.BICUBIC)) # PIL - transform_list.append(py_trans.RandomCrop(opt.fineSize)) # PIL + transform_list.append(vision.Resize(osize, Inter.BICUBIC)) # PIL + transform_list.append(vision.RandomCrop(opt.fineSize)) # PIL elif opt.resize_or_crop == 'crop': - transform_list.append(py_trans.RandomCrop(opt.fineSize)) + transform_list.append(vision.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'scale_width': transform_list.append( lambda img: __scale_width(img, opt.fineSize)) elif opt.resize_or_crop == 'scale_width_and_crop': transform_list.append( lambda img: __scale_width(img, opt.loadSize)) - transform_list.append(py_trans.RandomCrop(opt.fineSize)) + transform_list.append(vision.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'none': transform_list.append( lambda img: __adjust(img)) @@ -63,11 +63,11 @@ def get_transform(opt): raise ValueError('--resize_or_crop %s is not a valid option.' % opt.resize_or_crop) if opt.isTrain and not opt.no_flip: - transform_list.append(py_trans.RandomHorizontalFlip()) + transform_list.append(vision.RandomHorizontalFlip()) - transform_list += [py_trans.ToTensor(), - py_trans.Normalize((0.5, 0.5, 0.5), - (0.5, 0.5, 0.5))] + transform_list += [vision.ToTensor(), + vision.Normalize((0.5, 0.5, 0.5), + (0.5, 0.5, 0.5), is_hwc=False)] return Compose(transform_list) # just modify the width and height to be multiple of 4 diff --git a/research/cv/AVA_cifar/src/datasets.py b/research/cv/AVA_cifar/src/datasets.py index 6761f90902695c3bb25f112e0f0c599acc670d4c..df2d7a6d39ffe00acfbdb75acbb43f090e21f930 100644 --- a/research/cv/AVA_cifar/src/datasets.py +++ b/research/cv/AVA_cifar/src/datasets.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,9 +16,9 @@ import numpy as np import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as transforms -import mindspore.dataset.transforms.c_transforms as C -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.transforms as data_trans +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from mindspore.common import dtype as mstype from src.RandAugment import RandAugment from src.autoaugment import CIFAR10Policy @@ -32,39 +32,39 @@ class CIFAR10Dataset(): if not training: trsfm = Compose([ - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) else: if not use_third_trsfm: trsfm = Compose([ - transforms.ToPIL(), - transforms.RandomResizedCrop(size=32, scale=(0.2, 1.)), - transforms.RandomColorAdjust(0.4, 0.4, 0.4, 0.4), - transforms.RandomGrayscale(prob=0.2), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToPIL(), + vision.RandomResizedCrop(size=32, scale=(0.2, 1.)), + vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.4), + vision.RandomGrayscale(prob=0.2), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) else: if use_auto_augment: trsfm = Compose([ - transforms.ToPIL(), - transforms.RandomResizedCrop(size=32, scale=(0.2, 1.)), - transforms.RandomHorizontalFlip(), + vision.ToPIL(), + vision.RandomResizedCrop(size=32, scale=(0.2, 1.)), + vision.RandomHorizontalFlip(), CIFAR10Policy(), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) else: rand_augment = RandAugment(n=2, m=10) trsfm = Compose([ - transforms.ToPIL(), - transforms.RandomResizedCrop(size=32, scale=(0.2, 1.)), - transforms.RandomHorizontalFlip(), + vision.ToPIL(), + vision.RandomResizedCrop(size=32, scale=(0.2, 1.)), + vision.RandomHorizontalFlip(), rand_augment, - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) self.trsfm = trsfm @@ -83,7 +83,7 @@ class CIFAR10Dataset(): num_shards=self.device_num, shard_id=self.device_id) ds_ = ds_.map(input_columns=["image"], operations=self.trsfm) - typecast_op = C.TypeCast(mstype.int32) + typecast_op = data_trans.TypeCast(mstype.int32) ds_ = ds_.map(input_columns=["label"], operations=typecast_op) return ds_ diff --git a/research/cv/AVA_hpa/src/datasets.py b/research/cv/AVA_hpa/src/datasets.py index 7225593e759602eb58c71c38c69155ff9dcc5374..9394785d15cac48d8f33df0f3dcf9ec37e5e3de7 100644 --- a/research/cv/AVA_hpa/src/datasets.py +++ b/research/cv/AVA_hpa/src/datasets.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,9 @@ from collections import Counter from PIL import Image import numpy as np import pandas as pd -import mindspore.dataset.vision.py_transforms as transforms +import mindspore.dataset.vision as vision from mindspore.dataset import GeneratorDataset -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from src.RandAugment import RandAugment # split train val test = 4:1:5 @@ -40,35 +40,35 @@ class TransformOnImg: self.mode = mode rand_augment = RandAugment(n=2, m=10) self.trsfm_basic = Compose([ - transforms.ToPIL(), - transforms.Resize(256), - transforms.RandomResizedCrop(size=224, scale=(0.2, 1.)), - transforms.RandomColorAdjust(0.4, 0.4, 0.4, 0), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToPIL(), + vision.Resize(256), + vision.RandomResizedCrop(size=224, scale=(0.2, 1.)), + vision.RandomColorAdjust(0.4, 0.4, 0.4, 0), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) self.trsfm_aux = Compose([ - transforms.ToPIL(), - transforms.Resize(256), - transforms.RandomResizedCrop(size=224, scale=(0.2, 1.)), - transforms.RandomHorizontalFlip(), + vision.ToPIL(), + vision.Resize(256), + vision.RandomResizedCrop(size=224, scale=(0.2, 1.)), + vision.RandomHorizontalFlip(), rand_augment, - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) self.trsfm_train = Compose([ - transforms.ToPIL(), - transforms.Resize(256), - transforms.RandomResizedCrop(size=224, scale=(0.2, 1.)), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToPIL(), + vision.Resize(256), + vision.RandomResizedCrop(size=224, scale=(0.2, 1.)), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) self.trsfm = Compose([ - transforms.ToPIL(), - transforms.Resize(224), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), + vision.ToPIL(), + vision.Resize(224), + vision.ToTensor(), + vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=False), ]) def __call__(self, img, use_aux=False): diff --git a/research/cv/AlignedReID++/src/dataset_loader.py b/research/cv/AlignedReID++/src/dataset_loader.py index a3dba42f76418590eae7a05e0396aef03927e7d0..34ac5bbc3ac75ec8f65aff5c87a30b628d549b32 100644 --- a/research/cv/AlignedReID++/src/dataset_loader.py +++ b/research/cv/AlignedReID++/src/dataset_loader.py @@ -1,5 +1,5 @@ """get the dataset""" -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,8 +21,8 @@ import os.path as osp from PIL import Image from mindspore.dataset import GeneratorDataset -from mindspore.dataset.transforms.py_transforms import Compose -import mindspore.dataset.vision.py_transforms as P1 +from mindspore.dataset.transforms.transforms import Compose +import mindspore.dataset.vision as vision from .import data_manager from .import samplers @@ -159,9 +159,9 @@ def create_train_dataset(real_path, args, rank_id, rank_size): transform_train = [ decode, Random2DTranslation(args.height, args.width), - P1.RandomHorizontalFlip(0.5), - P1.ToTensor(), - P1.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), + vision.RandomHorizontalFlip(0.5), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False), RandomErasing() ] transform_train = Compose(transform_train) @@ -186,9 +186,9 @@ def create_test_dataset(real_path, args): transform_test = [ decode, - P1.Resize((args.height, args.width)), - P1.ToTensor(), - P1.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + vision.Resize((args.height, args.width)), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) ] transform_test = Compose(transform_test) @@ -212,4 +212,4 @@ def create_test_dataset(real_path, args): galleryloader = galleryloader.batch(batch_size=32, drop_remainder=True) return queryloader, galleryloader, dataset.num_train_pids - \ No newline at end of file + diff --git a/research/cv/AlignedReID/src/dataset.py b/research/cv/AlignedReID/src/dataset.py index 18afc481d8f7cac8395e914efc065db125a313a0..9014b2467e379ca7c810279860b4c72eb292e4ab 100644 --- a/research/cv/AlignedReID/src/dataset.py +++ b/research/cv/AlignedReID/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import pickle from collections import defaultdict import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import numpy as np from PIL import Image diff --git a/research/cv/AlphaPose/infer/sdk/postprocess/src/dataset.py b/research/cv/AlphaPose/infer/sdk/postprocess/src/dataset.py index 7265dfebad0c25a8b2e8d0b0800ee76aa33286a0..baa3310d4cfac57f7ddeea5029a72eeeb0826963 100644 --- a/research/cv/AlphaPose/infer/sdk/postprocess/src/dataset.py +++ b/research/cv/AlphaPose/infer/sdk/postprocess/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -26,7 +26,7 @@ import numpy as np import cv2 import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.utils.transforms import fliplr_joints, get_affine_transform, affine_transform from src.config import config diff --git a/research/cv/AlphaPose/src/dataset.py b/research/cv/AlphaPose/src/dataset.py index 7265dfebad0c25a8b2e8d0b0800ee76aa33286a0..baa3310d4cfac57f7ddeea5029a72eeeb0826963 100644 --- a/research/cv/AlphaPose/src/dataset.py +++ b/research/cv/AlphaPose/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -26,7 +26,7 @@ import numpy as np import cv2 import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.utils.transforms import fliplr_joints, get_affine_transform, affine_transform from src.config import config diff --git a/research/cv/AttGAN/src/data.py b/research/cv/AttGAN/src/data.py index 72cb898c27e024ccc39bfc0abcd1093250cccc77..75f6a68811dea2cb8b604cf965d606253e6f633a 100644 --- a/research/cv/AttGAN/src/data.py +++ b/research/cv/AttGAN/src/data.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import numpy as np from PIL import Image import mindspore.dataset as de -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms import py_transforms +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from src.utils import DistributedSampler @@ -40,11 +40,11 @@ class Custom: mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] - transform = [py_vision.ToPIL()] - transform.append(py_vision.Resize([128, 128])) - transform.append(py_vision.ToTensor()) - transform.append(py_vision.Normalize(mean=mean, std=std)) - transform = py_transforms.Compose(transform) + transform = [vision.ToPIL()] + transform.append(vision.Resize([128, 128])) + transform.append(vision.ToTensor()) + transform.append(vision.Normalize(mean=mean, std=std), is_hwc=False) + transform = Compose(transform) self.transform = transform self.images = np.array([images]) if images.size == 1 else images[0:] self.labels = np.array([labels]) if images.size == 1 else labels[0:] @@ -108,12 +108,12 @@ def get_loader(data_root, attr_path, selected_attrs, crop_size=170, image_size=1 mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] - transform = [py_vision.ToPIL()] - transform.append(py_vision.CenterCrop((crop_size, crop_size))) - transform.append(py_vision.Resize([image_size, image_size])) - transform.append(py_vision.ToTensor()) - transform.append(py_vision.Normalize(mean=mean, std=std)) - transform = py_transforms.Compose(transform) + transform = [vision.ToPIL()] + transform.append(vision.CenterCrop((crop_size, crop_size))) + transform.append(vision.Resize([image_size, image_size])) + transform.append(vision.ToTensor()) + transform.append(vision.Normalize(mean=mean, std=std), is_hwc=False) + transform = Compose(transform) dataset = CelebA(data_root, attr_path, image_size, mode, selected_attrs, transform, split_point=split_point) diff --git a/research/cv/AttentionCluster/make_dataset.py b/research/cv/AttentionCluster/make_dataset.py index af3b921409b9bea7254c061873a9d7000681477f..d8e864ca707515e276a64aed14ce01063af6dddc 100644 --- a/research/cv/AttentionCluster/make_dataset.py +++ b/research/cv/AttentionCluster/make_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import numpy as np import mindspore import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as c_trans +import mindspore.dataset.vision as c_trans import mindspore.nn as nn import mindspore.context as context import mindspore.common as common diff --git a/research/cv/AutoSlim/src/dataset.py b/research/cv/AutoSlim/src/dataset.py index 82d921f7b02c861f96a7a00054abb431a1c65777..6f8d7e3d883c8b0c85b7014f2e175f646d7436b2 100644 --- a/research/cv/AutoSlim/src/dataset.py +++ b/research/cv/AutoSlim/src/dataset.py @@ -18,8 +18,7 @@ Produce the dataset import os import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as c_vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as vision def data_transforms(args): """get transform of dataset""" @@ -40,18 +39,18 @@ def data_transforms(args): std = [0.229, 0.224, 0.225] crop_scale = 0.25 jitter_param = 0.4 - train_transforms = [c_vision.RandomCropDecodeResize(224, scale=(crop_scale, 1.0)), - c_vision.RandomColorAdjust(brightness=jitter_param, - contrast=jitter_param, - saturation=jitter_param), - c_vision.RandomHorizontalFlip(), - c_vision.HWC2CHW(), + train_transforms = [vision.RandomCropDecodeResize(224, scale=(crop_scale, 1.0)), + vision.RandomColorAdjust(brightness=jitter_param, + contrast=jitter_param, + saturation=jitter_param), + vision.RandomHorizontalFlip(), + vision.HWC2CHW(), ] - val_transforms = [py_vision.Decode(), - py_vision.Resize(256), - py_vision.CenterCrop(224), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + val_transforms = [vision.Decode(True), + vision.Resize(256), + vision.CenterCrop(224), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ] return train_transforms, val_transforms diff --git a/research/cv/CBAM/src/data.py b/research/cv/CBAM/src/data.py index 960b517259f2833f5ff45ebc33f622ea539d8531..7a425b1b3df191f834729b96a22756d0a9e50e00 100644 --- a/research/cv/CBAM/src/data.py +++ b/research/cv/CBAM/src/data.py @@ -22,7 +22,7 @@ import numpy as np from mindspore.communication.management import get_rank, get_group_size import mindspore.dataset as de import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def _get_rank_info(run_distribute): diff --git a/research/cv/CGAN/src/dataset.py b/research/cv/CGAN/src/dataset.py index 00e80558783a6a23214ca92c35a301a67dfc0b72..e2b687cb326513d4f04edf479ba2a8e5cc6c17a3 100644 --- a/research/cv/CGAN/src/dataset.py +++ b/research/cv/CGAN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import numpy as np import mindspore.dataset as ds from mindspore.common import dtype as mstype -import mindspore.dataset.transforms.c_transforms as CT +import mindspore.dataset.transforms as CT from mindspore.communication.management import get_rank, get_group_size diff --git a/research/cv/CMT/src/dataset.py b/research/cv/CMT/src/dataset.py index a27c6ecb2d2ece99900b800efad9b7879ec0b80b..3bc5b667cef889d8469f74b56f3aac4ae0b57ad2 100644 --- a/research/cv/CMT/src/dataset.py +++ b/research/cv/CMT/src/dataset.py @@ -16,11 +16,10 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as pytrans +import mindspore.dataset.transforms as C2 -from mindspore.dataset.transforms.py_transforms import Compose -import mindspore.dataset.vision.c_transforms as C +from mindspore.dataset.transforms.transforms import Compose +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_id=0, batch_size=128): @@ -59,13 +58,13 @@ def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_ ] else: trans = [ - pytrans.Decode(), - pytrans.Resize(235), - pytrans.CenterCrop(224) + C.Decode(True), + C.Resize(235), + C.CenterCrop(224) ] trans += [ - pytrans.ToTensor(), - pytrans.Normalize(mean=mean, std=std), + C.ToTensor(), + C.Normalize(mean=mean, std=std, is_hwc=False), ] trans = Compose(trans) diff --git a/research/cv/CascadeRCNN/src/dataset.py b/research/cv/CascadeRCNN/src/dataset.py index 657c9619ddd4e116898467114ada2748264a7b03..8fd59ebd1aca423a05286dabc1e96e458f9d0e29 100644 --- a/research/cv/CascadeRCNN/src/dataset.py +++ b/research/cv/CascadeRCNN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,7 +23,7 @@ from numpy import random import cv2 import mmcv import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from src.config import config diff --git a/research/cv/CycleGAN/src/dataset/cyclegan_dataset.py b/research/cv/CycleGAN/src/dataset/cyclegan_dataset.py index ec2a889bad0d8337179b3329a1e5ff7c3b05117c..2371995e0f1f6749b2276a5a94ad859e8626d586 100644 --- a/research/cv/CycleGAN/src/dataset/cyclegan_dataset.py +++ b/research/cv/CycleGAN/src/dataset/cyclegan_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import multiprocessing import numpy as np from PIL import Image import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from .distributed_sampler import DistributedSampler IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.tif', '.tiff'] diff --git a/research/cv/DBPN/src/dataset/dataset.py b/research/cv/DBPN/src/dataset/dataset.py index a9c57d85023d663c0c7690974f5b8c64814a576e..a7f426930f29273d3c3da647056afb0f31208225 100644 --- a/research/cv/DBPN/src/dataset/dataset.py +++ b/research/cv/DBPN/src/dataset/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import os import random import numpy as np from PIL import Image, ImageOps -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as V from mindspore import dataset as de, context from mindspore.context import ParallelMode from mindspore.communication import get_rank, get_group_size @@ -173,10 +173,10 @@ def create_train_dataset(dataset, args): mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] trans = [ - P.ToTensor(), + V.ToTensor(), ] if args.isgan: - trans.append(P.Normalize(mean=mean, std=std)) + trans.append(V.Normalize(mean=mean, std=std, is_hwc=False)) train_ds = train_ds.map(operations=trans, input_columns=['target_image']) train_ds = train_ds.map(operations=trans, input_columns=['input_image']) train_ds = train_ds.map(operations=trans, input_columns=['bicubic_image']) @@ -215,9 +215,9 @@ def create_val_dataset(dataset, args): if not args.vgg: mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] - trans = [P.ToTensor()] + trans = [V.ToTensor()] if args.isgan: - trans.append(P.Normalize(mean=mean, std=std)) + trans.append(V.Normalize(mean=mean, std=std, is_hwc=False)) val_ds = val_ds.map(operations=trans, input_columns=["target_image"]) val_ds = val_ds.map(operations=trans, input_columns=["input_image"]) val_ds = val_ds.map(operations=trans, input_columns=["bicubic_image"]) diff --git a/research/cv/DDAG/eval.py b/research/cv/DDAG/eval.py index cc907a049dc0da5a63d462be5a6855d9a33bdb6d..9a37a8e7c3edeb9d4d8ddf1b514695bed604930a 100644 --- a/research/cv/DDAG/eval.py +++ b/research/cv/DDAG/eval.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,12 +21,12 @@ import argparse import psutil import numpy as np import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from mindspore import context, load_checkpoint, load_param_into_net, DatasetHelper from mindspore.context import ParallelMode from mindspore.communication.management import init, get_group_size -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from src.dataset import SYSUDatasetGenerator, RegDBDatasetGenerator, TestData from src.dataset import process_gallery_sysu, process_query_sysu, process_test_regdb from src.evalfunc import test @@ -246,9 +246,9 @@ if __name__ == "__main__": transform_test = Compose( [ decode, - py_trans.Resize((args.img_h, args.img_w)), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + vision.Resize((args.img_h, args.img_w)), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) ] ) diff --git a/research/cv/DDAG/train.py b/research/cv/DDAG/train.py index 7c35b73576c1af8fac5143b4c2743435b70ac9f1..ef393d6194dffb7a74b1f984689e68e3c90932f1 100644 --- a/research/cv/DDAG/train.py +++ b/research/cv/DDAG/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,12 +24,12 @@ import numpy as np import mindspore as ms import mindspore.nn as nn import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from mindspore import context, load_checkpoint, load_param_into_net, save_checkpoint, DatasetHelper, Tensor from mindspore.context import ParallelMode from mindspore.communication import init, get_group_size, get_rank -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from mindspore.nn import SGD, Adam @@ -375,35 +375,35 @@ if __name__ == "__main__": transform_train_rgb = Compose( [ decode, - py_trans.Pad(10), - py_trans.RandomCrop((args.img_h, args.img_w)), - py_trans.RandomGrayscale(prob=0.5), - py_trans.RandomHorizontalFlip(), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), - py_trans.RandomErasing(prob=0.5) + vision.Pad(10), + vision.RandomCrop((args.img_h, args.img_w)), + vision.RandomGrayscale(prob=0.5), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False), + vision.RandomErasing(prob=0.5) ] ) transform_train_ir = Compose( [ decode, - py_trans.Pad(10), - py_trans.RandomCrop((args.img_h, args.img_w)), - py_trans.RandomGrayscale(prob=0.5), - py_trans.RandomHorizontalFlip(), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), - py_trans.RandomErasing(prob=0.5) + vision.Pad(10), + vision.RandomCrop((args.img_h, args.img_w)), + vision.RandomGrayscale(prob=0.5), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False), + vision.RandomErasing(prob=0.5) ] ) transform_test = Compose( [ decode, - py_trans.Resize((args.img_h, args.img_w)), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + vision.Resize((args.img_h, args.img_w)), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) ] ) diff --git a/research/cv/DDRNet/src/data/imagenet.py b/research/cv/DDRNet/src/data/imagenet.py index b4d01c858dbbd6c5a2ac935221cb6219bacc4f05..3f176dc0513be6786374e99001428f6414a2b780 100644 --- a/research/cv/DDRNet/src/data/imagenet.py +++ b/research/cv/DDRNet/src/data/imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.data.augment.auto_augment import rand_augment_transform from src.data.augment.mixup import Mixup @@ -90,29 +89,29 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): aa_params["interpolation"] = _pil_interp(interpolation) transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), RandomResizedCropAndInterpolation(size=args.image_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=interpolation), - py_vision.RandomHorizontalFlip(prob=0.5), + vision.RandomHorizontalFlip(prob=0.5), ] if isinstance(auto_augment, str) and auto_augment.startswith('rand'): transform_img += [rand_augment_transform(auto_augment, aa_params)] else: - transform_img += [py_vision.RandomColorAdjust(args.color_jitter, args.color_jitter, args.color_jitter)] + transform_img += [vision.RandomColorAdjust(args.color_jitter, args.color_jitter, args.color_jitter)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std)] + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False)] if args.re_prob > 0.: transform_img += [RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count)] else: # test transform complete transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), Resize(int(args.image_size / args.crop_pct), interpolation="bicubic"), - py_vision.CenterCrop(image_size), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.CenterCrop(image_size), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ] transform_label = C.TypeCast(mstype.int32) diff --git a/research/cv/DRNet/src/dataset.py b/research/cv/DRNet/src/dataset.py index 1da4599948d9701c0983f29715ef61095ba9b514..04802ca69e60a7b096fbe4321cec2265952ae257 100644 --- a/research/cv/DRNet/src/dataset.py +++ b/research/cv/DRNet/src/dataset.py @@ -16,9 +16,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as vision from mindspore.dataset.vision import Inter def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_id=0, batch_size=128): @@ -55,16 +54,16 @@ def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_ ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank_id) - decode_p = py_vision.Decode() - resize_p = py_vision.Resize(int(256), interpolation=Inter.BILINEAR) - center_crop_p = py_vision.CenterCrop(224) - totensor = py_vision.ToTensor() - normalize_p = py_vision.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - trans = py_transforms.Compose([decode_p, resize_p, center_crop_p, totensor, normalize_p]) + decode_p = vision.Decode(True) + resize_p = vision.Resize(int(256), interpolation=Inter.BILINEAR) + center_crop_p = vision.CenterCrop(224) + totensor = vision.ToTensor() + normalize_p = vision.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], is_hwc=False) + trans = C2.Compose([decode_p, resize_p, center_crop_p, totensor, normalize_p]) type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8) ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8) ds = ds.batch(batch_size, drop_remainder=True) return ds - \ No newline at end of file + diff --git a/research/cv/DeepID/src/dataset.py b/research/cv/DeepID/src/dataset.py index 7541a7ff4b5bee3233fb365eb6145c21a472dce4..328410d7ac8e88c800ceb31d2e95591f1af28abb 100644 --- a/research/cv/DeepID/src/dataset.py +++ b/research/cv/DeepID/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,8 +20,8 @@ import csv import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.dataset as de @@ -112,12 +112,12 @@ def get_loader(data_root, mode='train'): """Build and return a data loader.""" mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] - transform = [py_vision.ToPIL()] + transform = [vision.ToPIL()] if mode == 'train': - transform.append(py_vision.RandomHorizontalFlip()) - transform.append(py_vision.ToTensor()) - transform.append(py_vision.Normalize(mean=mean, std=std)) - transform = py_transforms.Compose(transform) + transform.append(vision.RandomHorizontalFlip()) + transform.append(vision.ToTensor()) + transform.append(vision.Normalize(mean=mean, std=std, is_hwc=False)) + transform = data_trans.Compose(transform) dataset = Youtube(data_root, mode, transform=transform) diff --git a/research/cv/EfficientDet_d0/src/dataset.py b/research/cv/EfficientDet_d0/src/dataset.py index 537857e526c771d9d8b8587db2864288bb165c81..5c5f87644c56548a8c8c7c1a46550e7b5057da57 100644 --- a/research/cv/EfficientDet_d0/src/dataset.py +++ b/research/cv/EfficientDet_d0/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import os import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from pycocotools.coco import COCO from src.config import config diff --git a/research/cv/FDA-BNN/src/dataset.py b/research/cv/FDA-BNN/src/dataset.py index 84177de83a97f63f69d0fcfa38020117a95225d8..c8f22b5aa390b2f6b578c58526852d417e65bab6 100755 --- a/research/cv/FDA-BNN/src/dataset.py +++ b/research/cv/FDA-BNN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,14 +17,12 @@ import math import os import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.transforms.c_transforms as c_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as vision # values that should remain constant @@ -55,24 +53,24 @@ def create_dataset(batch_size, train_data_url='', workers=8, distributed=False, """Create ImageNet training dataset""" if not os.path.exists(train_data_url): raise ValueError('Path not exists') - decode_op = py_vision.Decode() - type_cast_op = c_transforms.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + type_cast_op = data_trans.TypeCast(mstype.int32) - random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size), - scale=SCALE, ratio=RATIO, - interpolation=Inter.BICUBIC) - random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5) + random_resize_crop_bicubic = vision.RandomResizedCrop(size=(input_size, input_size), + scale=SCALE, ratio=RATIO, + interpolation=Inter.BICUBIC) + random_horizontal_flip_op = vision.RandomHorizontalFlip(0.5) adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter) - random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range, - contrast=adjust_range, - saturation=adjust_range) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + random_color_jitter_op = vision.RandomColorAdjust(brightness=adjust_range, + contrast=adjust_range, + saturation=adjust_range) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) # assemble all the transforms - image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic, - random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, random_resize_crop_bicubic, + random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) rank_id = get_rank() if distributed else 0 rank_size = get_group_size() if distributed else 1 @@ -122,16 +120,16 @@ def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=F else: scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT)) - type_cast_op = c_transforms.TypeCast(mstype.int32) - decode_op = py_vision.Decode() - resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) - center_crop = py_vision.CenterCrop(size=input_size) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + type_cast_op = data_trans.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + resize_op = vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) + center_crop = vision.CenterCrop(size=input_size) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) - image_ops = py_transforms.Compose([decode_op, resize_op, center_crop, - to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, resize_op, center_crop, + to_tensor, normalize_op]) dataset = dataset.map(input_columns=["label"], operations=type_cast_op, num_parallel_workers=workers) @@ -180,9 +178,9 @@ def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=Non random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR rescale_op = vision.Rescale(1.0 / 255.0, 0.0) - normalize_op = vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) + normalize_op = vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=True) changeswap_op = vision.HWC2CHW() - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) c_trans = [] if training: diff --git a/research/cv/FaceAttribute/preprocess.py b/research/cv/FaceAttribute/preprocess.py index cbe80e3242d0442e57916ba82eaf090604676577..1a2ebb578c428d96af0c619d1043f3d14913ec5a 100644 --- a/research/cv/FaceAttribute/preprocess.py +++ b/research/cv/FaceAttribute/preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ import os import mindspore.dataset as de -import mindspore.dataset.vision.py_transforms as F -import mindspore.dataset.transforms.py_transforms as F2 +import mindspore.dataset.vision as F +import mindspore.dataset.transforms as F2 from model_utils.config import config @@ -28,10 +28,10 @@ def eval_data_generator(args): dst_h = args.dst_h batch_size = 1 #attri_num = args.attri_num - transform_img = F2.Compose([F.Decode(), + transform_img = F2.Compose([F.Decode(True)), F.Resize((dst_w, dst_h)), F.ToTensor(), - F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)]) de_dataset = de.MindDataset(mindrecord_path + "0", columns_list=["image", "label"]) de_dataset = de_dataset.map(input_columns="image", operations=transform_img, num_parallel_workers=args.workers, diff --git a/research/cv/FaceAttribute/src/dataset_eval.py b/research/cv/FaceAttribute/src/dataset_eval.py index 2167a4b2f548a3029bc7798ee5c0e90091e167b5..f4ed3cd9f235b428197a2fcde9c760aff0d7795f 100644 --- a/research/cv/FaceAttribute/src/dataset_eval.py +++ b/research/cv/FaceAttribute/src/dataset_eval.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -14,8 +14,8 @@ # ============================================================================ """Face attribute dataset for eval""" import mindspore.dataset as de -import mindspore.dataset.vision.py_transforms as F -import mindspore.dataset.transforms.py_transforms as F2 +import mindspore.dataset.vision as F +import mindspore.dataset.transforms as F2 __all__ = ['data_generator_eval'] @@ -27,10 +27,10 @@ def data_generator_eval(args): dst_h = args.dst_h batch_size = 1 attri_num = args.attri_num - transform_img = F2.Compose([F.Decode(), + transform_img = F2.Compose([F.Decode(True), F.Resize((dst_w, dst_h)), F.ToTensor(), - F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)]) de_dataset = de.MindDataset(mindrecord_path + "0", columns_list=["image", "label"]) de_dataset = de_dataset.map(input_columns="image", operations=transform_img, num_parallel_workers=args.workers, diff --git a/research/cv/FaceAttribute/src/dataset_train.py b/research/cv/FaceAttribute/src/dataset_train.py index bbd210a353f34ae88b2fe020fc11e770467aef12..79617bdb77873b106e46b836eab5957e4f645273 100644 --- a/research/cv/FaceAttribute/src/dataset_train.py +++ b/research/cv/FaceAttribute/src/dataset_train.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -14,8 +14,8 @@ # ============================================================================ """Face attribute dataset for train""" import mindspore.dataset as de -import mindspore.dataset.vision.py_transforms as F -import mindspore.dataset.transforms.py_transforms as F2 +import mindspore.dataset.vision as F +import mindspore.dataset.transforms as F2 __all__ = ['data_generator'] @@ -28,11 +28,11 @@ def data_generator(args): batch_size = args.per_batch_size attri_num = args.attri_num max_epoch = args.max_epoch - transform_img = F2.Compose([F.Decode(), + transform_img = F2.Compose([F.Decode(True)), F.Resize((dst_w, dst_h)), F.RandomHorizontalFlip(prob=0.5), F.ToTensor(), - F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) + F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)]) de_dataset = de.MindDataset(mindrecord_path + "0", columns_list=["image", "label"], num_shards=args.world_size, shard_id=args.local_rank) diff --git a/research/cv/FaceDetection/preprocess.py b/research/cv/FaceDetection/preprocess.py index 8f9961b26e655ddcb53ed8e066cdbce5125c910a..205d315310f3852dbb7fbcbbb7d22addf13e0daf 100644 --- a/research/cv/FaceDetection/preprocess.py +++ b/research/cv/FaceDetection/preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ import os import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as V import mindspore.dataset as de from model_utils.config import config @@ -30,7 +30,7 @@ class SingleScaleTrans_Infer: def __call__(self, imgs, ann, image_names, image_size, batch_info): - decode = P.Decode() + decode = V.Decode(True) ret_imgs = [] ret_anno = [] diff --git a/research/cv/FaceDetection/src/data_preprocess.py b/research/cv/FaceDetection/src/data_preprocess.py index 1eba9175890a25e63258fc9c1d2e2901716c994a..8c1e7ebaae726b0fce08dfebe12add3fd95420a2 100644 --- a/research/cv/FaceDetection/src/data_preprocess.py +++ b/research/cv/FaceDetection/src/data_preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Face detection yolov3 data pre-process.""" import multiprocessing import numpy as np -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as V import mindspore.dataset as de from src.transforms import RandomCropLetterbox, RandomFlip, HSVShift, ResizeLetterbox @@ -31,10 +31,10 @@ class SingleScaleTrans: def __call__(self, imgs, ann, image_names, image_size, batch_info): size = self.resize - decode = P.Decode() + decode = P.Decode(True) resize_letter_box_op = ResizeLetterbox(input_dim=size) - to_tensor = P.ToTensor() + to_tensor = V.ToTensor() ret_imgs = [] ret_anno = [] @@ -204,7 +204,7 @@ def preprocess_fn(image, annotation): anchors = config.anchors anchors_mask = config.anchors_mask - decode = P.Decode() + decode = P.Decode(True) random_crop_letter_box_op = RandomCropLetterbox(jitter=jitter, input_dim=size) random_flip_op = RandomFlip(flip) hsv_shift_op = HSVShift(hue, sat, val) diff --git a/research/cv/FaceNet/src/LFWDataset.py b/research/cv/FaceNet/src/LFWDataset.py index cda486727c534bf29c89177d24dcc4dddcd74ae5..7cc5444a1363cf18b531dd0e317f93a6f53f0f0a 100644 --- a/research/cv/FaceNet/src/LFWDataset.py +++ b/research/cv/FaceNet/src/LFWDataset.py @@ -17,8 +17,7 @@ import os import numpy as np from PIL import Image -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as C import mindspore.dataset as de from mindspore.common import set_seed set_seed(0) @@ -94,9 +93,9 @@ class LFWDataset: def get_lfw_dataloader(eval_root_dir, eval_pairs_path, eval_batch_size): data_transforms = [C.RandomResize(size=(224, 224)), - P.ToPIL(), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])] + C.ToPIL(), + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)] face_dataset = LFWDataset(data_dir=eval_root_dir, pairs_path=eval_pairs_path) diff --git a/research/cv/FaceNet/src/data_loader.py b/research/cv/FaceNet/src/data_loader.py index 41968e5d5bdddf6178675737e005f47d09aac35e..abe10b2d304abeef134a3be7dab7fe5f188c811c 100644 --- a/research/cv/FaceNet/src/data_loader.py +++ b/research/cv/FaceNet/src/data_loader.py @@ -18,8 +18,7 @@ import os import csv import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as P -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as de @@ -68,17 +67,17 @@ def get_dataloader(train_root_dir, valid_root_dir, 'train': [ C.RandomResize(size=(224, 224)), C.RandomHorizontalFlip(), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])], + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)], 'train_valid': [ C.RandomResize(size=(224, 224)), C.RandomHorizontalFlip(), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])], + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)], 'valid': [ C.RandomResize(size=(224, 224)), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]} + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)]} dataset_column_names = ["anc_img", "pos_img", "neg_img", "pos_class", "neg_class"] diff --git a/research/cv/FaceNet/src/data_loader_generate_triplets_online.py b/research/cv/FaceNet/src/data_loader_generate_triplets_online.py index b12537e8970d500dacc70844e82b92ffe122d505..337b200ab29f4d212c0a86a49dd3b18f36fda6f6 100644 --- a/research/cv/FaceNet/src/data_loader_generate_triplets_online.py +++ b/research/cv/FaceNet/src/data_loader_generate_triplets_online.py @@ -18,8 +18,7 @@ import os import numpy as np import pandas as pd from PIL import Image -import mindspore.dataset.vision.py_transforms as P -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as de @@ -107,17 +106,17 @@ def get_dataloader(train_root_dir, valid_root_dir, 'train': [ C.RandomResize(size=(224, 224)), C.RandomHorizontalFlip(), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])], + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)], 'train_valid': [ C.RandomResize(size=(224, 224)), C.RandomHorizontalFlip(), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])], + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)], 'valid': [ C.RandomResize(size=(224, 224)), - P.ToTensor(), - P.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]} + C.ToTensor(), + C.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False)]} dataset_column_names = ["anc_img", "pos_img", "neg_img", "pos_class", "neg_class"] diff --git a/research/cv/FaceQualityAssessment/src/dataset.py b/research/cv/FaceQualityAssessment/src/dataset.py index 8ccf54460f927ebe5aaa3c064214c487f5fcac1d..149ae3410e7e6af1c409dd93de673923fb89b9e2 100644 --- a/research/cv/FaceQualityAssessment/src/dataset.py +++ b/research/cv/FaceQualityAssessment/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import numpy as np from PIL import Image, ImageFile import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as F +import mindspore.dataset.vision as F warnings.filterwarnings('ignore') ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/research/cv/FaceRecognition/eval.py b/research/cv/FaceRecognition/eval.py index 6c5dba1399601e3a96d936005d11e7fa74f38435..0ca97bfce9eaf0f0c4dbb59e0ff3b7136c1a7dd5 100644 --- a/research/cv/FaceRecognition/eval.py +++ b/research/cv/FaceRecognition/eval.py @@ -21,8 +21,8 @@ import numpy as np import cv2 from mindspore.common import dtype as mstype -import mindspore.dataset.transforms.py_transforms as transforms -import mindspore.dataset.vision.py_transforms as vision +import mindspore.dataset.transforms as transforms +import mindspore.dataset.vision as vision import mindspore.dataset as de from mindspore import Tensor, context from mindspore.train.serialization import load_checkpoint, load_param_into_net @@ -266,9 +266,8 @@ def run_eval(args): args.logger.info('INFO, graph compile finished, time used:{:.2f}s, start calculate img embedding'. format(compile_time_used)) - img_transforms = transforms.Compose([vision.ToTensor(), vision.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) - - + img_transforms = transforms.Compose([vision.ToTensor(), + vision.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)]) #for test images args.logger.info('INFO, start step1, calculate test img embedding, weight file = {}'.format(args.weight)) diff --git a/research/cv/FaceRecognition/src/dataset_factory.py b/research/cv/FaceRecognition/src/dataset_factory.py index 0cf1ad0d39d88842b616551bc70488d8a98bef7b..64b0fb49f1988d53b50e79fd2245437bdd34ab9b 100644 --- a/research/cv/FaceRecognition/src/dataset_factory.py +++ b/research/cv/FaceRecognition/src/dataset_factory.py @@ -18,8 +18,8 @@ import math import numpy as np import mindspore.dataset as de -import mindspore.dataset.vision.py_transforms as F -import mindspore.dataset.transforms.py_transforms as F2 +import mindspore.dataset.vision as F +import mindspore.dataset.transforms as F2 from src.custom_dataset import DistributedCustomSampler, CustomDataset @@ -27,7 +27,7 @@ __all__ = ['get_de_dataset'] def get_de_dataset(args): '''get_de_dataset''' - lbl_transforms = [F.ToType(np.int32)] + lbl_transforms = [F2.TypeCast(np.int32)] transform_label = F2.Compose(lbl_transforms) drop_remainder = True @@ -35,7 +35,7 @@ def get_de_dataset(args): transforms = [F.ToPIL(), F.RandomHorizontalFlip(), F.ToTensor(), - F.Normalize(mean=[0.5], std=[0.5])] + F.Normalize(mean=[0.5], std=[0.5], is_hwc=False)] transform = F2.Compose(transforms) cache_path = os.path.join('cache', os.path.basename(args.data_dir), 'data_cache.pkl') if args.device_target == 'GPU' and args.local_rank != 0: diff --git a/research/cv/FaceRecognitionForTracking/eval.py b/research/cv/FaceRecognitionForTracking/eval.py index 110e37c509ad8b3de7e7987e7180c702ca96d3ec..aba67c8183b1a5ccf50ae1fc959f70e1525a2259 100644 --- a/research/cv/FaceRecognitionForTracking/eval.py +++ b/research/cv/FaceRecognitionForTracking/eval.py @@ -21,8 +21,8 @@ import numpy as np from PIL import Image from tqdm import tqdm -import mindspore.dataset.vision.py_transforms as V -import mindspore.dataset.transforms.py_transforms as T +import mindspore.dataset.vision as V +import mindspore.dataset.transforms as T from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net @@ -98,7 +98,7 @@ def load_images(paths, batch_size=128): resize = V.Resize((96, 64)) transform = T.Compose([ V.ToTensor(), - V.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) + V.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5], is_hwc=False)]) for i, _ in enumerate(paths): im = Image.open(paths[i]) im = resize(im) diff --git a/research/cv/FaceRecognitionForTracking/preprocess.py b/research/cv/FaceRecognitionForTracking/preprocess.py index dad3c2795b19c6f91458d1864c02e39b11765d94..1401348119e1e7c2abf30e99a5ae466e045164f0 100644 --- a/research/cv/FaceRecognitionForTracking/preprocess.py +++ b/research/cv/FaceRecognitionForTracking/preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2020-2021 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import argparse import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as V -import mindspore.dataset.transforms.py_transforms as T +import mindspore.dataset.vision as V +import mindspore.dataset.transforms as T def load_images(paths, batch_size=1): @@ -28,7 +28,7 @@ def load_images(paths, batch_size=1): resize = V.Resize((96, 64)) transform = T.Compose([ V.ToTensor(), - V.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) + V.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5], is_hwc=False)]) for i, _ in enumerate(paths): im = Image.open(paths[i]) im = resize(im) diff --git a/research/cv/FaceRecognitionForTracking/src/dataset.py b/research/cv/FaceRecognitionForTracking/src/dataset.py index 5cea075028f7e3469aaad47ac9f71e30ad800955..3ffd357958f20889cfbc61d3fddf65792092e882 100644 --- a/research/cv/FaceRecognitionForTracking/src/dataset.py +++ b/research/cv/FaceRecognitionForTracking/src/dataset.py @@ -19,8 +19,8 @@ from PIL import ImageFile from mindspore import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as VC -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as VC +import mindspore.dataset.transforms as C sys.path.append('./') sys.path.append('../data/') diff --git a/research/cv/GENet_Res50/src/dataset.py b/research/cv/GENet_Res50/src/dataset.py index 3f032c27b046c609146fc3876e4bd0915ed99a73..3396298b7cccce7594f6656326b8023f0c4da7c0 100644 --- a/research/cv/GENet_Res50/src/dataset.py +++ b/research/cv/GENet_Res50/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/HRNetW48_cls/src/dataset.py b/research/cv/HRNetW48_cls/src/dataset.py index 9d417f5455c6ace0e4986dc86c665a614286cf0b..43f0d27e804094cca90fe82d7d9abef53ee49c33 100644 --- a/research/cv/HRNetW48_cls/src/dataset.py +++ b/research/cv/HRNetW48_cls/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/HireMLP/src/dataset.py b/research/cv/HireMLP/src/dataset.py index a27c6ecb2d2ece99900b800efad9b7879ec0b80b..3bc5b667cef889d8469f74b56f3aac4ae0b57ad2 100644 --- a/research/cv/HireMLP/src/dataset.py +++ b/research/cv/HireMLP/src/dataset.py @@ -16,11 +16,10 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as pytrans +import mindspore.dataset.transforms as C2 -from mindspore.dataset.transforms.py_transforms import Compose -import mindspore.dataset.vision.c_transforms as C +from mindspore.dataset.transforms.transforms import Compose +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_id=0, batch_size=128): @@ -59,13 +58,13 @@ def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_ ] else: trans = [ - pytrans.Decode(), - pytrans.Resize(235), - pytrans.CenterCrop(224) + C.Decode(True), + C.Resize(235), + C.CenterCrop(224) ] trans += [ - pytrans.ToTensor(), - pytrans.Normalize(mean=mean, std=std), + C.ToTensor(), + C.Normalize(mean=mean, std=std, is_hwc=False), ] trans = Compose(trans) diff --git a/research/cv/HourNAS/src/dataset.py b/research/cv/HourNAS/src/dataset.py index 663fa35f42b9db69c4170e4a9e4631f72de61fef..1ec1f68ffa8fe155ef9429822b456ca902e36644 100644 --- a/research/cv/HourNAS/src/dataset.py +++ b/research/cv/HourNAS/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,14 +17,12 @@ import math import os import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.transforms.c_transforms as c_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as vision # values that should remain constant DEFAULT_CROP_PCT = 0.875 @@ -54,24 +52,24 @@ def create_dataset(batch_size, train_data_url='', workers=8, distributed=False, """Create ImageNet training dataset""" if not os.path.exists(train_data_url): raise ValueError('Path not exists') - decode_op = py_vision.Decode() - type_cast_op = c_transforms.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + type_cast_op = data_trans.TypeCast(mstype.int32) - random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size), - scale=SCALE, ratio=RATIO, - interpolation=Inter.BICUBIC) - random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5) + random_resize_crop_bicubic = vision.RandomResizedCrop(size=(input_size, input_size), + scale=SCALE, ratio=RATIO, + interpolation=Inter.BICUBIC) + random_horizontal_flip_op = vision.RandomHorizontalFlip(0.5) adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter) - random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range, - contrast=adjust_range, - saturation=adjust_range) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + random_color_jitter_op = vision.RandomColorAdjust(brightness=adjust_range, + contrast=adjust_range, + saturation=adjust_range) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) # assemble all the transforms - image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic, - random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, random_resize_crop_bicubic, + random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) rank_id = get_rank() if distributed else 0 rank_size = get_group_size() if distributed else 1 @@ -120,16 +118,16 @@ def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=F else: scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT)) - type_cast_op = c_transforms.TypeCast(mstype.int32) - decode_op = py_vision.Decode() - resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) - center_crop = py_vision.CenterCrop(size=input_size) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + type_cast_op = data_trans.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + resize_op = vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) + center_crop = vision.CenterCrop(size=input_size) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) - image_ops = py_transforms.Compose([decode_op, resize_op, center_crop, - to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, resize_op, center_crop, + to_tensor, normalize_op]) dataset = dataset.map(input_columns=["label"], operations=type_cast_op, num_parallel_workers=workers) @@ -175,10 +173,10 @@ def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=Non random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR rescale_op = vision.Rescale(1.0 / 255.0, 0.0) - #normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) - normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.24703233, 0.24348505, 0.26158768)) + #normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=True) + normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.24703233, 0.24348505, 0.26158768), is_hwc=True) changeswap_op = vision.HWC2CHW() - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) c_trans = [] if training: diff --git a/research/cv/ICNet/Res50V1_PRE/src/dataset.py b/research/cv/ICNet/Res50V1_PRE/src/dataset.py index 3f032c27b046c609146fc3876e4bd0915ed99a73..3396298b7cccce7594f6656326b8023f0c4da7c0 100644 --- a/research/cv/ICNet/Res50V1_PRE/src/dataset.py +++ b/research/cv/ICNet/Res50V1_PRE/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/ICNet/eval.py b/research/cv/ICNet/eval.py index c48be4d8e01cce5dbc4b5bbf23f1e70a8af24d41..21d0a21e0c357df24ec86ea6aa4334b80b35fbd6 100644 --- a/research/cv/ICNet/eval.py +++ b/research/cv/ICNet/eval.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import mindspore.ops as ops from mindspore import load_param_into_net from mindspore import load_checkpoint from mindspore import Tensor -import mindspore.dataset.vision.py_transforms as transforms +import mindspore.dataset.vision as vision parser = argparse.ArgumentParser(description="ICNet Evaluation") parser.add_argument("--dataset_path", type=str, default="/data/cityscapes/", help="dataset path") @@ -98,8 +98,8 @@ class Evaluator: def _img_transform(self, image): """img_transform""" - to_tensor = transforms.ToTensor() - normalize = transforms.Normalize([.485, .456, .406], [.229, .224, .225]) + to_tensor = vision.ToTensor() + normalize = vision.Normalize([.485, .456, .406], [.229, .224, .225], is_hwc=False) image = to_tensor(image) image = normalize(image) return image diff --git a/research/cv/ICNet/src/cityscapes_mindrecord.py b/research/cv/ICNet/src/cityscapes_mindrecord.py index 0ccc783ddfa95b3c10746301bac5eb5161e63395..a3acc652e3f3bb4bba46cd397bf6896da8500cdf 100644 --- a/research/cv/ICNet/src/cityscapes_mindrecord.py +++ b/research/cv/ICNet/src/cityscapes_mindrecord.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,8 +22,8 @@ from PIL import ImageOps from PIL import ImageFilter import mindspore.dataset as de from mindspore.mindrecord import FileWriter -import mindspore.dataset.vision.py_transforms as transforms -import mindspore.dataset.transforms.py_transforms as tc +import mindspore.dataset.vision as transforms +import mindspore.dataset.transforms as tc def _get_city_pairs(folder, split='train'): @@ -103,7 +103,8 @@ def _sync_transform(img, mask): def _class_to_index(mask): """class to index""" - # reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py + # Reference: + # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py _key = np.array([-1, -1, -1, -1, -1, -1, -1, -1, 0, 1, -1, -1, 2, 3, 4, -1, -1, -1, @@ -136,7 +137,7 @@ def _img_mask_transform(img, mask): """img and mask transform""" input_transform = tc.Compose([ transforms.ToTensor(), - transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))]) + transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False)]) img = _img_transform(img) mask = _mask_transform(mask) img = input_transform(img) diff --git a/research/cv/ICNet/src/visualize.py b/research/cv/ICNet/src/visualize.py index 5748181e990959c4cac8a9abd492ab5c184a8732..61adc9d70b2714c979485ed4b0fd4246d4c582ee 100644 --- a/research/cv/ICNet/src/visualize.py +++ b/research/cv/ICNet/src/visualize.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import mindspore.ops as ops from mindspore import Tensor from mindspore import load_param_into_net from mindspore import load_checkpoint -import mindspore.dataset.vision.py_transforms as transforms +import mindspore.dataset.vision as vision from models.icnet import ICNet __all__ = ['get_color_palette', 'set_img_color', @@ -30,8 +30,8 @@ __all__ = ['get_color_palette', 'set_img_color', def _img_transform(img): """img_transform""" - totensor = transforms.ToTensor() - normalize = transforms.Normalize([.485, .456, .406], [.229, .224, .225]) + totensor = vision.ToTensor() + normalize = vision.Normalize([.485, .456, .406], [.229, .224, .225], is_hwc=False) img = totensor(img) img = normalize(img) return img diff --git a/research/cv/ISyNet/src/dataset.py b/research/cv/ISyNet/src/dataset.py index 06d86d1c943fe35b8636f39a937b68cf8cee2445..940c0acc4df1341eea65da51f39bd7a6dea6a742 100644 --- a/research/cv/ISyNet/src/dataset.py +++ b/research/cv/ISyNet/src/dataset.py @@ -19,9 +19,8 @@ import os import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.vision import Inter from mindspore.communication.management import init, get_rank, get_group_size from src.model_utils.config import config @@ -83,7 +82,7 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target= ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] @@ -171,7 +170,7 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target= ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] @@ -267,7 +266,7 @@ def create_dataset_pynative(dataset_path, do_train, repeat_num=1, batch_size=32, ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] @@ -351,7 +350,7 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target= ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] @@ -437,7 +436,7 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target= ] if autoaugment: trans += [ - P.ToPIL(), + C.ToPIL(), ImageNetPolicy(), ToNumpy(), ] diff --git a/research/cv/ISyNet/src/transform.py b/research/cv/ISyNet/src/transform.py index 400e8b2116ed851a08eaaaabe697c9ab75a4a7da..d3ea07319c73ac1b217579ec44de7e1621cc2a28 100644 --- a/research/cv/ISyNet/src/transform.py +++ b/research/cv/ISyNet/src/transform.py @@ -16,7 +16,7 @@ random augment class """ import numpy as np -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as vision from src import transform_utils IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) @@ -37,9 +37,9 @@ class RandAugment: # assert the imgs object are pil_images ret_imgs = [] ret_labels = [] - py_to_pil_op = P.ToPIL() - to_tensor = P.ToTensor() - normalize_op = P.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + py_to_pil_op = vision.ToPIL() + to_tensor = vision.Tensor() + normalize_op = vision.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) rand_augment_ops = transform_utils.rand_augment_transform(self.config_str, self.hparams) for i, image in enumerate(imgs): img_pil = py_to_pil_op(image) diff --git a/research/cv/ISyNet/utils/preprocess_310.py b/research/cv/ISyNet/utils/preprocess_310.py index 38c855977cc44f40e8c1bdae1d67b56b6041513a..897d2e5d4b713236b5da2b109bd68ce702bf42c3 100644 --- a/research/cv/ISyNet/utils/preprocess_310.py +++ b/research/cv/ISyNet/utils/preprocess_310.py @@ -18,8 +18,8 @@ import argparse import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 PARSER = argparse.ArgumentParser(description="ISyNet preprocess") PARSER.add_argument("--data_path", type=str, required=True, help="data path.") diff --git a/research/cv/Inception-v2/src/dataset.py b/research/cv/Inception-v2/src/dataset.py index 59a03b8e7f62a2b7a9c562b709f5836cd8945e4b..1ebd2a9f58c3fbac647d5068752fde4545eecddc 100644 --- a/research/cv/Inception-v2/src/dataset.py +++ b/research/cv/Inception-v2/src/dataset.py @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision def create_dataset_cifar10(dataset_path, cfg, training, repeat_num=1): diff --git a/research/cv/JDE/eval_detect.py b/research/cv/JDE/eval_detect.py index 9425f78caca267f6a7615263f74993239195b6d7..f4487ec2de663a276102a7d7c08be08d2efad908 100644 --- a/research/cv/JDE/eval_detect.py +++ b/research/cv/JDE/eval_detect.py @@ -23,7 +23,7 @@ from mindspore import dataset as ds from mindspore.common import set_seed from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank -from mindspore.dataset.vision import py_transforms as PY +from mindspore.dataset.vision import transforms as vision from mindspore.train.serialization import load_checkpoint from cfg.config import config as default_config @@ -69,7 +69,7 @@ def main( opt.dataset_root, test_paths, augment=False, - transforms=PY.ToTensor(), + transforms=vision.ToTensor(), config=opt, ) diff --git a/research/cv/JDE/train.py b/research/cv/JDE/train.py index da70b37187a1fb6573c6841ec91f1d96cd4560d6..dbce644f2c8beba27017d8bdd7a77386d8749d6d 100644 --- a/research/cv/JDE/train.py +++ b/research/cv/JDE/train.py @@ -25,7 +25,7 @@ from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank from mindspore.communication.management import init from mindspore.context import ParallelMode -from mindspore.dataset.vision import py_transforms as PY +from mindspore.dataset.vision import transforms as vision from mindspore.train.callback import CheckpointConfig from mindspore.train.callback import LossMonitor from mindspore.train.callback import ModelCheckpoint @@ -177,7 +177,7 @@ if __name__ == "__main__": trainset_paths, k_max=config.k_max, augment=True, - transforms=PY.ToTensor(), + transforms=vision.ToTensor(), config=config, ) diff --git a/research/cv/LightCNN/src/dataset.py b/research/cv/LightCNN/src/dataset.py index 46192a0a060a5a8e552083e4afea8896d50b7f7e..110d14dd0ad500686b57132f74bbd413e9638c1d 100644 --- a/research/cv/LightCNN/src/dataset.py +++ b/research/cv/LightCNN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import cv2 import numpy as np import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose def img_loader(path): @@ -67,19 +67,19 @@ def create_dataset(mode, data_url, data_list, batch_size, resize_size=144, if mode == 'Train': shuffle = True drop_last = True - image_ops = Compose([py_vision.ToPIL(), - py_vision.Resize(resize_size), - py_vision.RandomCrop(input_size), - py_vision.RandomHorizontalFlip(), - py_vision.ToTensor()]) + image_ops = Compose([vision.ToPIL(), + vision.Resize(resize_size), + vision.RandomCrop(input_size), + vision.RandomHorizontalFlip(), + vision.ToTensor()]) elif mode == 'Val': shuffle = False drop_last = False - image_ops = Compose([py_vision.ToPIL(), - py_vision.Resize(resize_size), - py_vision.CenterCrop(input_size), - py_vision.ToTensor()]) + image_ops = Compose([vision.ToPIL(), + vision.Resize(resize_size), + vision.CenterCrop(input_size), + vision.ToTensor()]) dataset_generator = ImageList(root=data_url, fileList=data_list) diff --git a/research/cv/MGN/src/dataset.py b/research/cv/MGN/src/dataset.py index 2d4e8696fa2a675d8e7571e03f99ef5060081aaa..f4ce073a52334349fa18ee8739e421ae2ee97976 100644 --- a/research/cv/MGN/src/dataset.py +++ b/research/cv/MGN/src/dataset.py @@ -20,7 +20,7 @@ import random import re import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import numpy as np from PIL import Image diff --git a/research/cv/MVD/eval.py b/research/cv/MVD/eval.py index 8151b8e6c2da15874c55c86a5d802f4ac4cbd3ce..af9c2a75da42d6223af994d16a2facdad966adb9 100644 --- a/research/cv/MVD/eval.py +++ b/research/cv/MVD/eval.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,10 +21,10 @@ import argparse import numpy as np import psutil import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from mindspore import context, load_checkpoint, load_param_into_net, DatasetHelper -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from PIL import Image @@ -216,9 +216,9 @@ if __name__ == "__main__": transform_test = Compose( [ decode, - py_trans.Resize((args.img_h, args.img_w)), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + vision.Resize((args.img_h, args.img_w)), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) ] ) diff --git a/research/cv/MVD/train.py b/research/cv/MVD/train.py index ea0d5f1c4dc8e0606d3402b9e4aff8adebb129b9..c6ad55320a7e975a5ba8071146ae10d3ce4040a6 100644 --- a/research/cv/MVD/train.py +++ b/research/cv/MVD/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,13 +24,13 @@ from tqdm import tqdm import mindspore as ms import mindspore.ops as P import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from mindspore import context, load_checkpoint, \ load_param_into_net, save_checkpoint, DatasetHelper from mindspore.context import ParallelMode from mindspore.communication.management import init, get_group_size -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from mindspore.nn import SGD, Adam from mindspore import nn @@ -289,33 +289,33 @@ if __name__ == "__main__": transform_train_rgb = Compose( [ decode, - py_trans.RandomCrop((args.img_h, args.img_w)), - py_trans.RandomGrayscale(prob=0.5), - py_trans.RandomHorizontalFlip(), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), - py_trans.RandomErasing(prob=0.5) + vision.RandomCrop((args.img_h, args.img_w)), + vision.RandomGrayscale(prob=0.5), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False), + vision.RandomErasing(prob=0.5) ] ) transform_train_ir = Compose( [ decode, - py_trans.RandomCrop((args.img_h, args.img_w)), - # py_trans.RandomGrayscale(prob=0.5), - py_trans.RandomHorizontalFlip(), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), - py_trans.RandomErasing(prob=0.5) + vision.RandomCrop((args.img_h, args.img_w)), + # vision.RandomGrayscale(prob=0.5), + vision.RandomHorizontalFlip(), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False), + vision.RandomErasing(prob=0.5) ] ) transform_test = Compose( [ decode, - py_trans.Resize((args.img_h, args.img_w)), - py_trans.ToTensor(), - py_trans.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + vision.Resize((args.img_h, args.img_w)), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) ] ) diff --git a/research/cv/ManiDP/src/dataset.py b/research/cv/ManiDP/src/dataset.py index 220fd0147b0b7b15aed46db0c75c529a88e11648..58aa330bd7a67a17b2cdca639311804088c343ed 100644 --- a/research/cv/ManiDP/src/dataset.py +++ b/research/cv/ManiDP/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,14 +17,12 @@ import math import os import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.transforms.c_transforms as c_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as vision # values that should remain constant @@ -55,24 +53,24 @@ def create_dataset(batch_size, train_data_url='', workers=8, distributed=False, """Create ImageNet training dataset""" if not os.path.exists(train_data_url): raise ValueError('Path not exists') - decode_op = py_vision.Decode() - type_cast_op = c_transforms.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + type_cast_op = data_trans.TypeCast(mstype.int32) - random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size), - scale=SCALE, ratio=RATIO, - interpolation=Inter.BICUBIC) - random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5) + random_resize_crop_bicubic = vision.RandomResizedCrop(size=(input_size, input_size), + scale=SCALE, ratio=RATIO, + interpolation=Inter.BICUBIC) + random_horizontal_flip_op = vision.RandomHorizontalFlip(0.5) adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter) - random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range, - contrast=adjust_range, - saturation=adjust_range) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + random_color_jitter_op = vision.RandomColorAdjust(brightness=adjust_range, + contrast=adjust_range, + saturation=adjust_range) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) # assemble all the transforms - image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic, - random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, random_resize_crop_bicubic, + random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) rank_id = get_rank() if distributed else 0 rank_size = get_group_size() if distributed else 1 @@ -121,16 +119,16 @@ def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=F else: scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT)) - type_cast_op = c_transforms.TypeCast(mstype.int32) - decode_op = py_vision.Decode() - resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) - center_crop = py_vision.CenterCrop(size=input_size) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + type_cast_op = data_trans.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + resize_op = vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) + center_crop = vision.CenterCrop(size=input_size) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) - image_ops = py_transforms.Compose([decode_op, resize_op, center_crop, - to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, resize_op, center_crop, + to_tensor, normalize_op]) dataset = dataset.map(input_columns=["label"], operations=type_cast_op, num_parallel_workers=workers) @@ -178,7 +176,7 @@ def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=Non rescale_op = vision.Rescale(1.0 / 255.0, 0.0) normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)) changeswap_op = vision.HWC2CHW() - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) c_trans = [] if training: diff --git a/research/cv/MaskedFaceRecognition/test_dataset.py b/research/cv/MaskedFaceRecognition/test_dataset.py index 33720e01cb79d70af5dce434ab26edef59901d67..f35c23b7e4799e3ae5a217c11c6dd767ef93fedf 100644 --- a/research/cv/MaskedFaceRecognition/test_dataset.py +++ b/research/cv/MaskedFaceRecognition/test_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ create train or eval dataset. """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as CV +import mindspore.dataset.transforms as C from config import config from dataset.Dataset import Dataset diff --git a/research/cv/MaskedFaceRecognition/train_dataset.py b/research/cv/MaskedFaceRecognition/train_dataset.py index 0d9d9664f79b12f3387727a5e6560fbffb90b301..c3f8e5d926f8342ee294d7e6f8d8337cfce62895 100644 --- a/research/cv/MaskedFaceRecognition/train_dataset.py +++ b/research/cv/MaskedFaceRecognition/train_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ create train or eval dataset. """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as CV +import mindspore.dataset.transforms as C from config import config from dataset.MGDataset import DistributedPKSampler, MGDataset diff --git a/research/cv/NFNet/src/data/imagenet.py b/research/cv/NFNet/src/data/imagenet.py index 8edae82ebb5236c4bd3309eaca972ef32582628b..213425e7e21ad4c30e80d7e15dac6641cad3532f 100644 --- a/research/cv/NFNet/src/data/imagenet.py +++ b/research/cv/NFNet/src/data/imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import _pil_interp, rand_augment_transform @@ -95,12 +94,12 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(input_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.BICUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: diff --git a/research/cv/Neighbor2Neighbor/src/dataset.py b/research/cv/Neighbor2Neighbor/src/dataset.py index cf438509a29799b34b8d5cf088a141c936cf958d..5cda4531b6eb216e07030f036067b216b41233f1 100644 --- a/research/cv/Neighbor2Neighbor/src/dataset.py +++ b/research/cv/Neighbor2Neighbor/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import glob import numpy as np import PIL.Image as Image import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV class DataLoader_Imagenet_val: '''DataLoader_Imagenet_val''' diff --git a/research/cv/PAMTRI/MultiTaskNet/preprocess.py b/research/cv/PAMTRI/MultiTaskNet/preprocess.py index 26bd80b310585d45ba16e8454790510d180484eb..dc872e1379feb32d4690ad9d9fb02b7a3589cbaa 100644 --- a/research/cv/PAMTRI/MultiTaskNet/preprocess.py +++ b/research/cv/PAMTRI/MultiTaskNet/preprocess.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import argparse from pathlib import Path import mindspore.dataset as ds import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 from src.dataset.data_manager import DatasetManager from src.dataset.data_loader import ImageDataset from src.dataset.transforms import Compose_Keypt, Resize_Keypt, ToTensor_Keypt, Normalize_Keypt diff --git a/research/cv/PAMTRI/MultiTaskNet/src/dataset/dataset.py b/research/cv/PAMTRI/MultiTaskNet/src/dataset/dataset.py index ef92874e68141e6db1416cdf636e384124ca1f48..e34b6bbf88a3552ce63db5c34482c8e674583077 100644 --- a/research/cv/PAMTRI/MultiTaskNet/src/dataset/dataset.py +++ b/research/cv/PAMTRI/MultiTaskNet/src/dataset/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ import os import mindspore.dataset as ds import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 from .data_manager import DatasetManager from .data_loader import ImageDataset diff --git a/research/cv/PAMTRI/MultiTaskNet/src/dataset/transforms.py b/research/cv/PAMTRI/MultiTaskNet/src/dataset/transforms.py index e57f28f2a48d668a2e0fc603811f944153a3f3c5..303fb431454094a403a855d8939ceed0ac2558f2 100644 --- a/research/cv/PAMTRI/MultiTaskNet/src/dataset/transforms.py +++ b/research/cv/PAMTRI/MultiTaskNet/src/dataset/transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import random import collections import cv2 -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as vision if sys.version_info < (3, 3): Iterable = collections.Iterable @@ -54,7 +54,7 @@ class ToTensor_Keypt(): In the other cases, tensors are returned without scaling. """ def __init__(self): - self.to_tensor = py_vision.ToTensor() + self.to_tensor = vision.ToTensor() def __call__(self, img, vkeypt): """ @@ -104,7 +104,7 @@ class Normalize_Keypt(): self.mean.extend([mean_avg] * (channels_new - channels_orig)) self.std.extend([std_avg] * (channels_new - channels_orig)) - normalize = py_vision.Normalize(self.mean, self.std) + normalize = vision.Normalize(self.mean, self.std, is_hwc=False) return normalize(tensor) class Resize_Keypt(): diff --git a/research/cv/PAMTRI/PoseEstNet/src/dataset/dataset.py b/research/cv/PAMTRI/PoseEstNet/src/dataset/dataset.py index 75a78a144868d550ba72a84f00eb67c8cd7e0f38..26031cd9460e9557284afc29afe637d7e90be427 100644 --- a/research/cv/PAMTRI/PoseEstNet/src/dataset/dataset.py +++ b/research/cv/PAMTRI/PoseEstNet/src/dataset/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import copy import json from pathlib import Path import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from .veri import VeRiDataset @@ -42,8 +42,8 @@ def create_dataset(cfg, data_dir, is_train=True): "joints", "joints_vis"], num_parallel_workers=1, shuffle=False, num_shards=1, shard_id=0) trans = Compose([ - py_vision.ToTensor(), - py_vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) + vision.ToTensor(), + vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False) ]) dataset = dataset.map(operations=trans, input_columns="input", num_parallel_workers=8) diff --git a/research/cv/PAMTRI/PoseEstNet/trans.py b/research/cv/PAMTRI/PoseEstNet/trans.py index 5f6c377c8fa8884766ce5b4d0b34b2ddcc3529cb..cb5a4b4abfa052ec6a9318f83ece9c796355b330 100644 --- a/research/cv/PAMTRI/PoseEstNet/trans.py +++ b/research/cv/PAMTRI/PoseEstNet/trans.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,10 +21,10 @@ python trans.py --cfg config.yaml --ckpt_path Your.ckpt --data_dir datapath import os import argparse import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as vision from mindspore import context -from mindspore.dataset.transforms.py_transforms import Compose +from mindspore.dataset.transforms.transforms import Compose from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.model import get_pose_net @@ -62,8 +62,8 @@ if __name__ == '__main__': num_parallel_workers=1, shuffle=False, num_shards=1, shard_id=0) trans = Compose([ - py_vision.ToTensor(), - py_vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) + vision.ToTensor(), + vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False) ]) test_dataloader = test_dataloader.map(operations=trans, input_columns="input", num_parallel_workers=1) diff --git a/research/cv/PDarts/src/dataset.py b/research/cv/PDarts/src/dataset.py index e08fd37c9ec0ecbfb3505b60aa95e50e7a2b9c18..2309590cd344b959f4b8ad68f4975152b64983f1 100644 --- a/research/cv/PDarts/src/dataset.py +++ b/research/cv/PDarts/src/dataset.py @@ -15,8 +15,8 @@ """Read train and eval data""" import mindspore.dataset as ds from mindspore.common import dtype as mstype -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter diff --git a/research/cv/Pix2Pix/src/dataset/pix2pix_dataset.py b/research/cv/Pix2Pix/src/dataset/pix2pix_dataset.py index 2e4e2111c79fa80e92e17f7955746ff680710664..66efd4c181cd418f8584f63d55fa9a91fcc0e1b6 100644 --- a/research/cv/Pix2Pix/src/dataset/pix2pix_dataset.py +++ b/research/cv/Pix2Pix/src/dataset/pix2pix_dataset.py @@ -22,7 +22,7 @@ import numpy as np from PIL import Image import mindspore from mindspore import dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.utils.config import config class pix2pixDataset(): diff --git a/research/cv/ReIDStrongBaseline/src/dataset.py b/research/cv/ReIDStrongBaseline/src/dataset.py index 25fd91b513d9b327fc9503b7a441cc4ee60cedae..6955853c0844210dcbda48e1f118db222d907b79 100644 --- a/research/cv/ReIDStrongBaseline/src/dataset.py +++ b/research/cv/ReIDStrongBaseline/src/dataset.py @@ -18,7 +18,7 @@ import math import random import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import numpy as np from PIL import Image diff --git a/research/cv/RefineDet/src/dataset.py b/research/cv/RefineDet/src/dataset.py index 9a400aa3f9ac24198c8d6c4ecd2c90950b93791b..bac268b496c7c03a2796c267089d6100eea9853a 100644 --- a/research/cv/RefineDet/src/dataset.py +++ b/research/cv/RefineDet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -23,7 +23,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .box_utils import jaccard_numpy, refinedet_bboxes_encode, box_init diff --git a/research/cv/RefineNet/src/dataset.py b/research/cv/RefineNet/src/dataset.py index 50f68bf46a4c4413c7dce2146ff5bdf0c183e5d0..22b40d20451a6b18e66ac201f91edebb976cc333 100644 --- a/research/cv/RefineNet/src/dataset.py +++ b/research/cv/RefineNet/src/dataset.py @@ -15,7 +15,7 @@ """ dataset """ import numpy as np import cv2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as ds from mindspore.common import set_seed cv2.setNumThreads(0) diff --git a/research/cv/ResNeSt50/src/datasets/autoaug.py b/research/cv/ResNeSt50/src/datasets/autoaug.py index 1eb4c5a1b7de8b304249c5b13a305256dd35a129..bfc1acd66e32a7b6c4c67c11c3bf8a12a1712a3c 100644 --- a/research/cv/ResNeSt50/src/datasets/autoaug.py +++ b/research/cv/ResNeSt50/src/datasets/autoaug.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import random import numpy as np import PIL -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision RESAMPLE_MODE = PIL.Image.BICUBIC @@ -175,8 +175,8 @@ class RandAugment: self.n = n self.m = m self.augment_list = rand_augment_list() - self.to_pil = py_trans.ToPIL() - self.to_tensor = py_trans.ToTensor() + self.to_pil = vision.ToPIL() + self.to_tensor = vision.ToTensor() self.from_pil = from_pil self.as_pil = as_pil diff --git a/research/cv/ResNeSt50/src/datasets/dataset.py b/research/cv/ResNeSt50/src/datasets/dataset.py index 3fbea04094807c90086146bb50bf54075a4d0af5..3aaa5e8e825e7279d0abb616d7f0d633e02722ed 100644 --- a/research/cv/ResNeSt50/src/datasets/dataset.py +++ b/research/cv/ResNeSt50/src/datasets/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,9 +16,8 @@ import os import mindspore.dataset as dataset -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C -import mindspore.dataset.vision.py_transforms as P_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C from mindspore.common import dtype as mstype from src.datasets.autoaug import RandAugment @@ -44,10 +43,10 @@ def ImageNet(root, mode, V_C.RandomResizedCrop(crop_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), V_C.RandomHorizontalFlip(prob=0.5), V_C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), - P_C.ToPIL(), + V_C.ToPIL(), RandAugment(2, 12, True, True), - P_C.ToTensor(), - P_C.Normalize(mean=mean, std=std)] + V_C.ToTensor(), + V_C.Normalize(mean=mean, std=std, is_hwc=False)] else: mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] @@ -55,7 +54,7 @@ def ImageNet(root, mode, V_C.Decode(), V_C.Resize((320, 320)), V_C.CenterCrop(256), - V_C.Normalize(mean=mean, std=std), + V_C.Normalize(mean=mean, std=std, is_hwc=True), V_C.HWC2CHW()] else: transform_img = transform diff --git a/research/cv/SE-Net/src/dataset.py b/research/cv/SE-Net/src/dataset.py index 0b8671e2771d9d6874c86d6ebfe3859e29ef3666..22750915f3c8211dab9b2c96fb983e3a00f90a17 100644 --- a/research/cv/SE-Net/src/dataset.py +++ b/research/cv/SE-Net/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False): diff --git a/research/cv/SE_ResNeXt50/src/dataset.py b/research/cv/SE_ResNeXt50/src/dataset.py index 85f97ed70934b2d2f9de999bb2bdc983d477930d..9e12fefc0b82f332ee998c848984def6f9d4369b 100644 --- a/research/cv/SE_ResNeXt50/src/dataset.py +++ b/research/cv/SE_ResNeXt50/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.config import imagenet_cfg diff --git a/research/cv/SPPNet/src/dataset.py b/research/cv/SPPNet/src/dataset.py index 108114c962ccd51851f5e0b29d9b5eedec04a744..36aad47259815cf706cfaf0ff61ef2b66d25cf91 100644 --- a/research/cv/SPPNet/src/dataset.py +++ b/research/cv/SPPNet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ Produce the dataset import os import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV from mindspore.communication.management import get_rank, get_group_size diff --git a/research/cv/STGAN/modelarts/dataset/celeba.py b/research/cv/STGAN/modelarts/dataset/celeba.py index bf65edaab934ba1f047d63a19fee225b5b9df0fd..c342793e1111a839cb3d91ec45d2f6315e62a1ec 100644 --- a/research/cv/STGAN/modelarts/dataset/celeba.py +++ b/research/cv/STGAN/modelarts/dataset/celeba.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import multiprocessing import numpy as np import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore import context from mindspore.context import ParallelMode diff --git a/research/cv/STGAN/src/dataset/celeba.py b/research/cv/STGAN/src/dataset/celeba.py index bf65edaab934ba1f047d63a19fee225b5b9df0fd..c342793e1111a839cb3d91ec45d2f6315e62a1ec 100644 --- a/research/cv/STGAN/src/dataset/celeba.py +++ b/research/cv/STGAN/src/dataset/celeba.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import multiprocessing import numpy as np import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore import context from mindspore.context import ParallelMode diff --git a/research/cv/SiamFC/ModelArts/start_train.py b/research/cv/SiamFC/ModelArts/start_train.py index 303e8df7c16d4663eebffa05087fe72354e7c71f..99f0074c451d47ab0d2802aa07cb517ca62d6c24 100644 --- a/research/cv/SiamFC/ModelArts/start_train.py +++ b/research/cv/SiamFC/ModelArts/start_train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -30,7 +30,7 @@ from mindspore import nn from mindspore.train import Model from mindspore import Tensor from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor -import mindspore.dataset.transforms.py_transforms as py_transforms +import mindspore.dataset.transforms as data_trans from mindspore.train.serialization import load_checkpoint, export, load_param_into_net from src.config import config from src.create_lmdb import create_lmdb @@ -104,12 +104,12 @@ def train(args): set_seed(1234) random_crop_size = config.instance_size - 2 * config.total_stride - train_z_transforms = py_transforms.Compose([ + train_z_transforms = data_trans.Compose([ RandomStretch(), CenterCrop((config.exemplar_size, config.exemplar_size)), ToTensor() ]) - train_x_transforms = py_transforms.Compose([ + train_x_transforms = data_trans.Compose([ RandomStretch(), RandomCrop((random_crop_size, random_crop_size), config.max_translate), diff --git a/research/cv/SiamFC/train.py b/research/cv/SiamFC/train.py index c38b288d278907dca7a49f0661107d888c4ae7cd..f4f2a63380e4921fbbafdcaebf1c9b6b23f4f3a0 100644 --- a/research/cv/SiamFC/train.py +++ b/research/cv/SiamFC/train.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -26,7 +26,7 @@ import mindspore.dataset as ds from mindspore import nn from mindspore.train import Model from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor -import mindspore.dataset.transforms.py_transforms as py_transforms +import mindspore.dataset.transforms as data_trans from src.config import config from src.alexnet import SiameseAlexNet from src.dataset import ImagnetVIDDataset @@ -44,12 +44,12 @@ def train(data_dir): set_seed(1234) random_crop_size = config.instance_size - 2 * config.total_stride - train_z_transforms = py_transforms.Compose([ + train_z_transforms = data_trans.Compose([ RandomStretch(), CenterCrop((config.exemplar_size, config.exemplar_size)), ToTensor() ]) - train_x_transforms = py_transforms.Compose([ + train_x_transforms = data_trans.Compose([ RandomStretch(), RandomCrop((random_crop_size, random_crop_size), config.max_translate), diff --git a/research/cv/StarGAN/src/dataset.py b/research/cv/StarGAN/src/dataset.py index 22813c290c5752116b129298cb9fe85e2607fdc7..0d31e45642a5ab95546de3ba5dcbd815faa6a533 100644 --- a/research/cv/StarGAN/src/dataset.py +++ b/research/cv/StarGAN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import multiprocessing import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.dataset as de from src.utils import DistributedSampler @@ -146,14 +146,14 @@ def get_loader(data_root, attr_path, selected_attrs, crop_size=178, image_size=1 """Build and return a data loader.""" mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] - transform = [py_vision.ToPIL()] + transform = [vision.ToPIL()] if mode == 'train': - transform.append(py_vision.RandomHorizontalFlip()) - transform.append(py_vision.CenterCrop(crop_size)) - transform.append(py_vision.Resize([image_size, image_size])) - transform.append(py_vision.ToTensor()) - transform.append(py_vision.Normalize(mean=mean, std=std)) - transform = py_transforms.Compose(transform) + transform.append(vision.RandomHorizontalFlip()) + transform.append(vision.CenterCrop(crop_size)) + transform.append(vision.Resize([image_size, image_size])) + transform.append(vision.ToTensor()) + transform.append(vision.Normalize(mean=mean, std=std, is_hwc=False)) + transform = data_trans.Compose(transform) if dataset == 'CelebA': dataset = CelebA(data_root, attr_path, selected_attrs, transform, mode) diff --git a/research/cv/TCN/src/dataset.py b/research/cv/TCN/src/dataset.py index f68fe3e6db672c622c2fe4e58b20dc6a794efce6..413923a1abfdd0361ca51fb16d50ee71462ee891 100644 --- a/research/cv/TCN/src/dataset.py +++ b/research/cv/TCN/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ """ import numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as CV from mindspore import dtype as mstype np.random.seed(0) diff --git a/research/cv/TNT/src/data/imagenet.py b/research/cv/TNT/src/data/imagenet.py index c0fb4832e8538ad5ca776154acbbfd50a4d06069..95cb688a720db352887f3cf5a83221a64533a9f5 100644 --- a/research/cv/TNT/src/data/imagenet.py +++ b/research/cv/TNT/src/data/imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import _pil_interp, rand_augment_transform @@ -94,12 +93,12 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.BICUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: diff --git a/research/cv/U-GAT-IT/src/dataset/dataset.py b/research/cv/U-GAT-IT/src/dataset/dataset.py index 9a12bb4ab69393f6c577a0e7bf6f27f12dd047f4..fade60c4c0b981b780449bc304f8ed8fb6fecd01 100644 --- a/research/cv/U-GAT-IT/src/dataset/dataset.py +++ b/research/cv/U-GAT-IT/src/dataset/dataset.py @@ -22,7 +22,7 @@ import math import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as vision import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size @@ -30,18 +30,18 @@ from mindspore.communication.management import get_rank, get_group_size def TrainDataLoader(img_size, data_path, dataset, batch_size, distributed): """ DataLoader """ train_transform = [ - py_vision.ToPIL(), - py_vision.RandomHorizontalFlip(), - py_vision.Resize((img_size + 30, img_size + 30)), - py_vision.RandomCrop(img_size), - py_vision.ToTensor(), - py_vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), + vision.ToPIL(), + vision.RandomHorizontalFlip(), + vision.Resize((img_size + 30, img_size + 30)), + vision.RandomCrop(img_size), + vision.ToTensor(), + vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False), ] test_transform = [ - py_vision.ToPIL(), - py_vision.Resize((img_size, img_size)), - py_vision.ToTensor(), - py_vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), + vision.ToPIL(), + vision.Resize((img_size, img_size)), + vision.ToTensor(), + vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False), ] rank_size = 1 if distributed: @@ -76,10 +76,10 @@ def TrainDataLoader(img_size, data_path, dataset, batch_size, distributed): def TestDataLoader(img_size, data_path, dataset): """ DataLoader """ test_transform = [ - py_vision.ToPIL(), - py_vision.Resize((img_size, img_size)), - py_vision.ToTensor(), - py_vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), + vision.ToPIL(), + vision.Resize((img_size, img_size)), + vision.ToTensor(), + vision.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], is_hwc=False), ] testA_generator = GetDatasetGenerator(os.path.join(data_path, dataset), 'test') testA = ds.GeneratorDataset(testA_generator, ["image_A", "image_B"], shuffle=False, num_parallel_workers=12) diff --git a/research/cv/UNet3+/src/dataset.py b/research/cv/UNet3+/src/dataset.py index 2771788217043bfb9acefbf152e11f654aa1bf65..eb8ccb3df182e78797906b8c19c294424d509602 100644 --- a/research/cv/UNet3+/src/dataset.py +++ b/research/cv/UNet3+/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ from skimage.io import imread from skimage import color import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV class Dataset: '''Dataset''' diff --git a/research/cv/VehicleNet/src/dataset.py b/research/cv/VehicleNet/src/dataset.py index 58fc5ba3805ad5167e090a7bd7d0a5dd37816b5d..04bd4ea81a4fa155f1924223786ec5973867da53 100644 --- a/research/cv/VehicleNet/src/dataset.py +++ b/research/cv/VehicleNet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,9 +22,8 @@ from mindspore.mindrecord import FileWriter import mindspore.dataset as ds from mindspore.dataset.vision import Inter import mindspore.common.dtype as mstype -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as P_C +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 class Dataset: """Dataset""" @@ -151,9 +150,9 @@ def create_vehiclenet_dataset(mindrecord_file, batch_size=1, device_num=1, is_tr if is_training: if use_aug: - py_to_pil_op = P_C.ToPIL() + py_to_pil_op = C.ToPIL() autoaugment_op = ImageNetPolicy() - to_tensor_op = P_C.ToTensor() + to_tensor_op = C.ToTensor() transforms_list += [py_to_pil_op, autoaugment_op, to_tensor_op] resized_op = C.Resize([train_inputsize, train_inputsize], interpolation=Inter.BICUBIC) diff --git a/research/cv/ViG/src/data/imagenet.py b/research/cv/ViG/src/data/imagenet.py index 0e4ad3790da0789afa2272b7ae551f3ad33292c0..8fb4e3cb15fadcf760da93e71ba384033f8c9e11 100644 --- a/research/cv/ViG/src/data/imagenet.py +++ b/research/cv/ViG/src/data/imagenet.py @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import _pil_interp, rand_augment_transform @@ -94,12 +93,12 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.BICUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: diff --git a/research/cv/Yolact++/src/dataset.py b/research/cv/Yolact++/src/dataset.py index 6566291c441212ee30f44bd228ae0f1d66f1f0ef..e7b277e3b1aa6ef9fd8b91ba4c445c8e6903ff43 100644 --- a/research/cv/Yolact++/src/dataset.py +++ b/research/cv/Yolact++/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import mmcv import numpy as np from numpy import random import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from src.config import MEANS from src.config import yolact_plus_resnet50_config as cfg diff --git a/research/cv/advanced_east/src/dataset.py b/research/cv/advanced_east/src/dataset.py index ea040089c0be9d9f4713df1d7ea7509a75ea8c60..74949f617be925dc22024200ac3bbfd47912b1ee 100644 --- a/research/cv/advanced_east/src/dataset.py +++ b/research/cv/advanced_east/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ dataset. import os import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.vision as vision from mindspore.mindrecord import FileWriter import numpy as np from PIL import Image, ImageFile diff --git a/research/cv/arcface/src/dataset.py b/research/cv/arcface/src/dataset.py index 5cef4e2f3a99b64dd2d2b6378b96f498887ec507..b7ce783e364d4d0e9730d6a3c558e4764a6b31b7 100644 --- a/research/cv/arcface/src/dataset.py +++ b/research/cv/arcface/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ python dataset.py import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/augvit/src/c10_dataset.py b/research/cv/augvit/src/c10_dataset.py index b6042682f190e5006524a9bf4cf0aaf0aada339d..ad36d6e6661a9c62182f07389367f1c57c761271 100644 --- a/research/cv/augvit/src/c10_dataset.py +++ b/research/cv/augvit/src/c10_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as c_transforms -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as data_trans +import mindspore.dataset.vision as vision def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch_size=1): """ @@ -63,7 +63,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch rescale_op = vision.Rescale(1.0 / 255.0, 0.0) normalize_op = vision.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) changeswap_op = vision.HWC2CHW() - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) c_trans = [] if do_train: diff --git a/research/cv/autoaugment/src/dataset/autoaugment/aug.py b/research/cv/autoaugment/src/dataset/autoaugment/aug.py index 2c6a33b5e678fe03b4249d40e5ab20df19d486f0..83bda35cb76d789f69bca822890f8dcb87b9f0a3 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/aug.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/aug.py @@ -18,7 +18,7 @@ The Augment operator. import random -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from .third_party.policies import good_policies from .third_party.policies import svhn_good_policies @@ -61,8 +61,8 @@ class Augment: self.policies = policies self.oc = OperatorClasses() - self.to_pil = py_trans.ToPIL() - self.to_tensor = py_trans.ToTensor() + self.to_pil = vision.ToPIL() + self.to_tensor = vision.ToTensor() self.enable_basic = enable_basic self.random_crop = self.oc.RandomCrop(None) @@ -73,7 +73,7 @@ class Augment: self.as_pil = as_pil self.normalize = None if mean is not None and std is not None: - self.normalize = py_trans.Normalize(mean, std) + self.normalize = vision.Normalize(mean, std, is_hwc=False) def _apply(self, name, prob, level, img): if random.random() > prob: diff --git a/research/cv/autoaugment/src/dataset/autoaugment/ops/__init__.py b/research/cv/autoaugment/src/dataset/autoaugment/ops/__init__.py index f001d2520791fac998e76c481dc8666f2fe678cd..fba0aa2e95e761b9ef03952664bb15971873ff9b 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/ops/__init__.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/ops/__init__.py @@ -16,7 +16,7 @@ Package initialization for custom PIL operators. """ -from mindspore.dataset.vision import py_transforms +from mindspore.dataset.vision import transforms from .crop import RandomCrop from .cutout import RandomCutout @@ -41,9 +41,9 @@ from .transform import ( class OperatorClasses: """OperatorClasses gathers all unary-image transformations listed in the - Table 6 of https://arxiv.org/abs/1805.09501 and uses discrte levels for - these transformations (The Sample Pairing transformation is an - exception, which involes multiple images from a single mini-batch and + Table 6 of https://arxiv.org/abs/1805.09501 and uses discrete levels for + these transformations. (The Sample Pairing transformation is an + exception, which involves multiple images from a single mini-batch and is not exploited in this implementation.) Additionally, there are RandomHorizontalFlip and RandomCrop. @@ -56,9 +56,9 @@ class OperatorClasses: self.TranslateX = self.decorate(TranslateX, max_val=10, rounding=True) self.TranslateY = self.decorate(TranslateY, max_val=10, rounding=True) - self.AutoContrast = self.decorate(py_transforms.AutoContrast) - self.Invert = self.decorate(py_transforms.Invert) - self.Equalize = self.decorate(py_transforms.Equalize) + self.AutoContrast = self.decorate(transforms.AutoContrast) + self.Invert = self.decorate(transforms.Invert) + self.Equalize = self.decorate(transforms.Equalize) self.Solarize = self.decorate( Solarize, max_val=256, rounding=True, post=lambda x: 256 - x) @@ -76,7 +76,7 @@ class OperatorClasses: self.Cutout = self.decorate(RandomCutout, max_val=20, rounding=True) self.RandomHorizontalFlip = self.decorate( - py_transforms.RandomHorizontalFlip) + transforms.RandomHorizontalFlip) self.RandomCrop = self.decorate(RandomCrop) def vars(self): diff --git a/research/cv/autoaugment/src/dataset/autoaugment/ops/crop.py b/research/cv/autoaugment/src/dataset/autoaugment/ops/crop.py index dd42ad5d3e990aaeea56e7e5dd3dddece1bfbaa7..137236beaaf1474945322d0dea12759be4ad2670 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/ops/crop.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/ops/crop.py @@ -16,17 +16,17 @@ RandomCrop operator. """ -from mindspore.dataset.vision import py_transforms +from mindspore.dataset.vision import transforms from mindspore.dataset.vision import py_transforms_util from mindspore.dataset.vision import utils -class RandomCrop(py_transforms.RandomCrop): +class RandomCrop(transforms.RandomCrop): """ - RandomCrop inherits from py_transforms.RandomCrop but derives/uses the + RandomCrop inherits from transforms.RandomCrop but derives/uses the original image size as the output size. - Please refer to py_transforms.RandomCrop for argument specifications. + Please refer to transforms.RandomCrop for argument specifications. """ def __init__(self, padding=4, pad_if_needed=False, diff --git a/research/cv/autoaugment/src/dataset/autoaugment/ops/cutout.py b/research/cv/autoaugment/src/dataset/autoaugment/ops/cutout.py index 8d3e2d594fa4b5faf8e6b4f2d53bb1d7d7adf57f..7286d24a354408b4c02df01f283ba43bdc01ccc1 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/ops/cutout.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/ops/cutout.py @@ -21,7 +21,7 @@ import random class RandomCutout: """ - RandomCutout is similar to py_transforms.Cutout but is simplified and + RandomCutout is similar to transforms.CutOut but is simplified and crafted for PIL images. Args: diff --git a/research/cv/autoaugment/src/dataset/autoaugment/ops/ops_test.py b/research/cv/autoaugment/src/dataset/autoaugment/ops/ops_test.py index ebe85e6322e2c1756be3ad530c49f67d081555cd..b4575363ad7ff0e50fc1275b822191cf889e652f 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/ops/ops_test.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/ops/ops_test.py @@ -19,7 +19,7 @@ Visualization for testing purposes. import matplotlib.pyplot as plt import mindspore.dataset as ds -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision from mindspore import context context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU') @@ -36,7 +36,7 @@ def compare(data_path, trans, output_path='./ops_test.png'): # Apply transformations dataset_augmented = dataset_orig.map( - operations=[py_trans.ToPIL()] + trans + [py_trans.ToTensor()], + operations=[vision.ToPIL()] + trans + [vision.ToTensor()], input_columns=['image'], ) diff --git a/research/cv/autoaugment/src/dataset/autoaugment/ops/transform.py b/research/cv/autoaugment/src/dataset/autoaugment/ops/transform.py index c69a7401c88ba9125a9f7b8db5c6af16cb02364e..7974af71100fcecddc6db1c5890bef7b58635915 100644 --- a/research/cv/autoaugment/src/dataset/autoaugment/ops/transform.py +++ b/research/cv/autoaugment/src/dataset/autoaugment/ops/transform.py @@ -21,7 +21,6 @@ import random from PIL import Image, __version__ -from mindspore.dataset.vision.py_transforms import DE_PY_INTER_MODE from mindspore.dataset.vision.py_transforms_util import ( augment_error_message, is_pil, @@ -46,7 +45,7 @@ class ShearX: raise TypeError('shear must be a single number.') self.shear = shear - self.resample = DE_PY_INTER_MODE[resample] + self.resample = resample self.fill_value = fill_value def __call__(self, img): @@ -91,7 +90,7 @@ class ShearY: raise TypeError('shear must be a single number.') self.shear = shear - self.resample = DE_PY_INTER_MODE[resample] + self.resample = resample self.fill_value = fill_value def __call__(self, img): @@ -136,7 +135,7 @@ class TranslateX: raise TypeError('translate must be a single number.') self.translate = translate - self.resample = DE_PY_INTER_MODE[resample] + self.resample = resample self.fill_value = fill_value def __call__(self, img): @@ -181,7 +180,7 @@ class TranslateY: raise TypeError('Translate must be a single number.') self.translate = translate - self.resample = DE_PY_INTER_MODE[resample] + self.resample = resample self.fill_value = fill_value def __call__(self, img): @@ -212,12 +211,12 @@ class TranslateY: class Rotate: """ - Rotate is similar to py_vision.RandomRotation but uses a fixed degree. + Rotate is similar to mindspore.dataset.vision.transform's RandomRotation but uses a fixed degree. Args: degree (int): the degree to rotate. - Please refer to py_transforms.RandomRotation for more argument + Please refer to mindspore.dataset.vision.transforms Rotation for more argument specifications. """ @@ -229,7 +228,7 @@ class Rotate: raise TypeError('degree must be a single number.') self.degree = degree - self.resample = DE_PY_INTER_MODE[resample] + self.resample = resample self.expand = expand self.center = center self.fill_value = fill_value diff --git a/research/cv/autoaugment/src/dataset/cifar10.py b/research/cv/autoaugment/src/dataset/cifar10.py index 25724a9cfea66c5f63d35dcd6913767341e25550..166c78659f0f4d69d7b573042601a46ea29c4105 100644 --- a/research/cv/autoaugment/src/dataset/cifar10.py +++ b/research/cv/autoaugment/src/dataset/cifar10.py @@ -20,8 +20,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank from mindspore.communication.management import init diff --git a/research/cv/autoaugment/src/dataset/svhn_dataset.py b/research/cv/autoaugment/src/dataset/svhn_dataset.py index fa95bf1699e33499f571e2f46a0e8723601b5481..070b877ef278878eea70a57a3eff61a9337f93ae 100644 --- a/research/cv/autoaugment/src/dataset/svhn_dataset.py +++ b/research/cv/autoaugment/src/dataset/svhn_dataset.py @@ -20,8 +20,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank from mindspore.communication.management import init diff --git a/research/cv/cait/src/data/imagenet.py b/research/cv/cait/src/data/imagenet.py index 1539daa2c63b26d34e290c4abf9f9a5606c5602f..2eb8354c86c681c37e1a2e95f7d78f83546ffc98 100644 --- a/research/cv/cait/src/data/imagenet.py +++ b/research/cv/cait/src/data/imagenet.py @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.data.augment.auto_augment import rand_augment_transform from src.data.augment.mixup import Mixup @@ -91,26 +90,26 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): assert auto_augment.startswith('rand') transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), RandomResizedCropAndInterpolation(size=args.image_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=interpolation), - py_vision.RandomHorizontalFlip(prob=0.5), + vision.RandomHorizontalFlip(prob=0.5), ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std)] + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False)] if args.re_prob > 0.: transform_img += [RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count)] else: # test transform complete transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), Resize(int(args.image_size / args.crop_pct), interpolation="bicubic"), - py_vision.CenterCrop(image_size), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.CenterCrop(image_size), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ] transform_label = C.TypeCast(mstype.int32) diff --git a/research/cv/cct/src/data/cifar10.py b/research/cv/cct/src/data/cifar10.py index dceac7f861c8212e24cfcfa3ddd78b7c6f2d512c..dbfe0dcdb5fc734a18de42fc371984c82ebc4a0b 100644 --- a/research/cv/cct/src/data/cifar10.py +++ b/research/cv/cct/src/data/cifar10.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.data.augment.auto_augment import rand_augment_transform from src.data.augment.mixup import Mixup @@ -89,15 +89,15 @@ def create_dataset_cifar10(dataset_dir, args, repeat_num=1, training=True): auto_augment = args.auto_augment assert auto_augment.startswith('rand') transform_img = [ - py_vision.ToPIL(), + vision.ToPIL(), RandomResizedCropAndInterpolation(size=args.image_size, scale=(0.8, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=interpolation), - py_vision.RandomHorizontalFlip(prob=0.5), + vision.RandomHorizontalFlip(prob=0.5), ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std)] + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False)] if args.re_prob > 0.: transform_img += [RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count)] else: @@ -105,10 +105,10 @@ def create_dataset_cifar10(dataset_dir, args, repeat_num=1, training=True): std = [0.2470, 0.2435, 0.2616] # test transform complete transform_img = [ - py_vision.ToPIL(), + vision.ToPIL(), Resize(int(image_size), interpolation="bicubic"), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ] transform_label = C.TypeCast(mstype.int32) diff --git a/research/cv/cct/src/data/imagenet.py b/research/cv/cct/src/data/imagenet.py index e512c685c4d76d6eabdcdaa5cec4a4b682bfdfb4..7d1f0a2f396ebbb1017cb122508318d7789fee14 100644 --- a/research/cv/cct/src/data/imagenet.py +++ b/research/cv/cct/src/data/imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.data.augment.auto_augment import rand_augment_transform from src.data.augment.mixup import Mixup @@ -92,26 +91,26 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): assert auto_augment.startswith('rand') transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), RandomResizedCropAndInterpolation(size=args.image_size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=interpolation), - py_vision.RandomHorizontalFlip(prob=0.5), + vision.RandomHorizontalFlip(prob=0.5), ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std)] + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False)] if args.re_prob > 0.: transform_img += [RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count)] else: # test transform complete transform_img = [ vision.Decode(), - py_vision.ToPIL(), + vision.ToPIL(), Resize(int(args.image_size / args.crop_pct), interpolation="bicubic"), - py_vision.CenterCrop(image_size), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.CenterCrop(image_size), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ] transform_label = C.TypeCast(mstype.int32) diff --git a/research/cv/convnext/src/data/imagenet.py b/research/cv/convnext/src/data/imagenet.py index 7aa5c2c638e1998b973d21e0e336b8c2bcb99773..5a0cdcffe1bcfb0b7d9173f871eedefe050a0d21 100644 --- a/research/cv/convnext/src/data/imagenet.py +++ b/research/cv/convnext/src/data/imagenet.py @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import pil_interp, rand_augment_transform @@ -94,12 +93,12 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.PILCUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: diff --git a/research/cv/dcgan/src/dataset.py b/research/cv/dcgan/src/dataset.py index 74a467a759608237ed7ffebafee56470ae7c0c59..4e0c06772b3a1d9f2c809fb14b362057e866fb1d 100644 --- a/research/cv/dcgan/src/dataset.py +++ b/research/cv/dcgan/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.config import dcgan_imagenet_cfg, dcgan_cifar10_cfg diff --git a/research/cv/delf/src/data_augmentation_parallel.py b/research/cv/delf/src/data_augmentation_parallel.py index 1428b0727f0bfa51c5448fb013e226aa3587c04b..fe55712999a7abd17af652121df9de6aa9e10bd6 100755 --- a/research/cv/delf/src/data_augmentation_parallel.py +++ b/research/cv/delf/src/data_augmentation_parallel.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ import os from mindspore import dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision def create_dataset(data_path, image_size=321, batch_size=32, seed=0, augmentation=True, repeat=True): """create dataset""" diff --git a/research/cv/ecolite/src/transforms.py b/research/cv/ecolite/src/transforms.py index 06e4d14be2a271d98c1029b5cdb3681986eb9d1f..c72ee01003c5075311f47089fef67b544a2b48d0 100644 --- a/research/cv/ecolite/src/transforms.py +++ b/research/cv/ecolite/src/transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import numbers import math from PIL import Image, ImageOps import numpy as np -from mindspore.dataset.vision import py_transforms as py_trans +import mindspore.dataset.vision as vision class GroupRandomCrop: @@ -55,7 +55,7 @@ class GroupCenterCrop: """GroupCenterCrop""" def __init__(self, size): - self.worker = py_trans.CenterCrop(size) + self.worker = vision.CenterCrop(size) def __call__(self, img_group): return [self.worker(img) for img in img_group] diff --git a/research/cv/efficientnet-b0/src/dataset.py b/research/cv/efficientnet-b0/src/dataset.py index 56602a36c8ad62e5eba51255eb288d623a738f80..64906ba88a337ded3d2746cc62f607f7824d9c0b 100644 --- a/research/cv/efficientnet-b0/src/dataset.py +++ b/research/cv/efficientnet-b0/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/research/cv/efficientnet-b1/src/dataset.py b/research/cv/efficientnet-b1/src/dataset.py index 1c87e997310a4de56fe9e245fac0b8d3dc438ddb..373f0995fcbf71f217ac5932b2cb132b8e0997c9 100644 --- a/research/cv/efficientnet-b1/src/dataset.py +++ b/research/cv/efficientnet-b1/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/efficientnet-b2/src/dataset.py b/research/cv/efficientnet-b2/src/dataset.py index c72f7fd3bbd4146f25dd53c97e5cb6680ca42050..6964008568c863e56b0cb29084b8fafcfa84dda7 100644 --- a/research/cv/efficientnet-b2/src/dataset.py +++ b/research/cv/efficientnet-b2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/research/cv/efficientnet-b3/src/dataset.py b/research/cv/efficientnet-b3/src/dataset.py index 6c1347d020784f93a907bbf73371f72f1d7690ee..5c571624e99d3415ce98728b59d9cf902a1beb52 100644 --- a/research/cv/efficientnet-b3/src/dataset.py +++ b/research/cv/efficientnet-b3/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/research/cv/efficientnetv2/src/data/imagenet_finetune.py b/research/cv/efficientnetv2/src/data/imagenet_finetune.py index 600615183093ba58ee21d224399db27fdd8dd257..1029f0081a97169891f0f6c33276db6d189d4686 100644 --- a/research/cv/efficientnetv2/src/data/imagenet_finetune.py +++ b/research/cv/efficientnetv2/src/data/imagenet_finetune.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision import numpy as np from .data_utils.moxing_adapter import sync_data diff --git a/research/cv/eppmvsnet/src/blendedmvs.py b/research/cv/eppmvsnet/src/blendedmvs.py index 21acd1e04b51bbe9eb61dddda4ebd510db942920..123a6ba0c7a241e33e40d45ee4ed63c988ed6dd2 100644 --- a/research/cv/eppmvsnet/src/blendedmvs.py +++ b/research/cv/eppmvsnet/src/blendedmvs.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,7 +22,7 @@ import cv2 import numpy as np from PIL import Image -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.vision as vision from src.utils import read_pfm @@ -202,15 +202,15 @@ class BlendedMVSDataset: def define_transforms(self): if self.training_tag and self.split == 'train': # you can add augmentation here self.transform = Compose([ - py_vision.ToTensor(), - py_vision.Normalize(mean=[0.485, 0.456, 0.406], - std=[0.229, 0.224, 0.225]), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225], is_hwc=False), ]) else: self.transform = Compose([ - py_vision.ToTensor(), - py_vision.Normalize(mean=[0.485, 0.456, 0.406], - std=[0.229, 0.224, 0.225]), + vision.ToTensor(), + vision.Normalize(mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225], is_hwc=False), ]) def __len__(self): diff --git a/research/cv/faster_rcnn_dcn/src/dataset.py b/research/cv/faster_rcnn_dcn/src/dataset.py index 1f104189dd7d9f1263eda6f5de8ce08c0cb3cef1..23697df6a9bc7fb887443e92a49b1838ee4b50a4 100644 --- a/research/cv/faster_rcnn_dcn/src/dataset.py +++ b/research/cv/faster_rcnn_dcn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,7 +22,7 @@ from numpy import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter diff --git a/research/cv/fishnet99/src/dataset.py b/research/cv/fishnet99/src/dataset.py index a5e72f198082f82bab894992f228029ea7d84ec1..8be01542b01f144adaf70dc94b44511033dd6fdd 100644 --- a/research/cv/fishnet99/src/dataset.py +++ b/research/cv/fishnet99/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.config import imagenet_cfg diff --git a/research/cv/ghostnet/src/dataset.py b/research/cv/ghostnet/src/dataset.py index 05acf36e1d5c5695a04260c92c2e3a334f3b5bca..28a272e3fe53354f59ef6e7cc1b0f5871ebfcf0b 100644 --- a/research/cv/ghostnet/src/dataset.py +++ b/research/cv/ghostnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, repeat_num=1, infer_910=True, device_id=0, batch_size=128): diff --git a/research/cv/ghostnet_quant/src/dataset.py b/research/cv/ghostnet_quant/src/dataset.py index edee462b4e5cfa70fedd7f3f9a4b91a8d0b846a4..6c56662cb4ba8d5cce3f8c653a6362651ee068ef 100644 --- a/research/cv/ghostnet_quant/src/dataset.py +++ b/research/cv/ghostnet_quant/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,9 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.vision.c_transforms as C -import mindspore.dataset.transforms.vision.py_transforms as P -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.transforms.vision import Inter @@ -73,18 +72,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch change_swap_op = C.HWC2CHW() # define python operations - decode_p = P.Decode() + decode_p = C.Decode(True) if model == 'ghostnet-600': s = 274 c = 240 else: s = 256 c = 224 - resize_p = P.Resize(s, interpolation=Inter.BICUBIC) - center_crop_p = P.CenterCrop(c) - totensor = P.ToTensor() - normalize_p = P.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) - composeop = P.ComposeOp( + resize_p = C.Resize(s, interpolation=Inter.BICUBIC) + center_crop_p = C.CenterCrop(c) + totensor = C.ToTensor() + normalize_p = C.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False) + composeop = C.ComposeOp( [decode_p, resize_p, center_crop_p, totensor, normalize_p]) if do_train: trans = [resize_crop_op, horizontal_flip_op, color_op, diff --git a/research/cv/glore_res/src/autoaugment.py b/research/cv/glore_res/src/autoaugment.py index 35ef907c1884d1d331e87cb2bbd20feecbb3c321..0cc9e65690a13ea3f8a51d07fef4b426ee94c509 100644 --- a/research/cv/glore_res/src/autoaugment.py +++ b/research/cv/glore_res/src/autoaugment.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,8 +15,8 @@ """define autoaugment""" import os import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as c_transforms -import mindspore.dataset.vision.c_transforms as c_vision +import mindspore.dataset.transforms as data_trans +import mindspore.dataset.vision as vision from mindspore import dtype as mstype from mindspore.communication.management import init, get_rank, get_group_size @@ -34,101 +34,101 @@ def int_parameter(level, maxval): def shear_x(level): v = float_parameter(level, 0.3) - return c_transforms.RandomChoice( - [c_vision.RandomAffine(degrees=0, shear=(-v, -v)), c_vision.RandomAffine(degrees=0, shear=(v, v))]) + return data_trans.RandomChoice( + [vision.RandomAffine(degrees=0, shear=(-v, -v)), vision.RandomAffine(degrees=0, shear=(v, v))]) def shear_y(level): v = float_parameter(level, 0.3) - return c_transforms.RandomChoice( - [c_vision.RandomAffine(degrees=0, shear=(0, 0, -v, -v)), c_vision.RandomAffine(degrees=0, shear=(0, 0, v, v))]) + return data_trans.RandomChoice( + [vision.RandomAffine(degrees=0, shear=(0, 0, -v, -v)), vision.RandomAffine(degrees=0, shear=(0, 0, v, v))]) def translate_x(level): v = float_parameter(level, 150 / 331) - return c_transforms.RandomChoice( - [c_vision.RandomAffine(degrees=0, translate=(-v, -v)), c_vision.RandomAffine(degrees=0, translate=(v, v))]) + return data_trans.RandomChoice( + [vision.RandomAffine(degrees=0, translate=(-v, -v)), vision.RandomAffine(degrees=0, translate=(v, v))]) def translate_y(level): v = float_parameter(level, 150 / 331) - return c_transforms.RandomChoice([c_vision.RandomAffine(degrees=0, translate=(0, 0, -v, -v)), - c_vision.RandomAffine(degrees=0, translate=(0, 0, v, v))]) + return data_trans.RandomChoice([vision.RandomAffine(degrees=0, translate=(0, 0, -v, -v)), + vision.RandomAffine(degrees=0, translate=(0, 0, v, v))]) def color_impl(level): v = float_parameter(level, 1.8) + 0.1 - return c_vision.RandomColor(degrees=(v, v)) + return vision.RandomColor(degrees=(v, v)) def rotate_impl(level): v = int_parameter(level, 30) - return c_transforms.RandomChoice( - [c_vision.RandomRotation(degrees=(-v, -v)), c_vision.RandomRotation(degrees=(v, v))]) + return data_trans.RandomChoice( + [vision.RandomRotation(degrees=(-v, -v)), vision.RandomRotation(degrees=(v, v))]) def solarize_impl(level): level = int_parameter(level, 256) v = 256 - level - return c_vision.RandomSolarize(threshold=(0, v)) + return vision.RandomSolarize(threshold=(0, v)) def posterize_impl(level): level = int_parameter(level, 4) v = 4 - level - return c_vision.RandomPosterize(bits=(v, v)) + return vision.RandomPosterize(bits=(v, v)) def contrast_impl(level): v = float_parameter(level, 1.8) + 0.1 - return c_vision.RandomColorAdjust(contrast=(v, v)) + return vision.RandomColorAdjust(contrast=(v, v)) def autocontrast_impl(level): - return c_vision.AutoContrast() + return vision.AutoContrast() def sharpness_impl(level): v = float_parameter(level, 1.8) + 0.1 - return c_vision.RandomSharpness(degrees=(v, v)) + return vision.RandomSharpness(degrees=(v, v)) def brightness_impl(level): v = float_parameter(level, 1.8) + 0.1 - return c_vision.RandomColorAdjust(brightness=(v, v)) + return vision.RandomColorAdjust(brightness=(v, v)) # define the Auto Augmentation policy imagenet_policy = [ [(posterize_impl(8), 0.4), (rotate_impl(9), 0.6)], [(solarize_impl(5), 0.6), (autocontrast_impl(5), 0.6)], - [(c_vision.Equalize(), 0.8), (c_vision.Equalize(), 0.6)], + [(vision.Equalize(), 0.8), (vision.Equalize(), 0.6)], [(posterize_impl(7), 0.6), (posterize_impl(6), 0.6)], - [(c_vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], + [(vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], - [(c_vision.Equalize(), 0.4), (rotate_impl(8), 0.8)], - [(solarize_impl(3), 0.6), (c_vision.Equalize(), 0.6)], - [(posterize_impl(5), 0.8), (c_vision.Equalize(), 1.0)], + [(vision.Equalize(), 0.4), (rotate_impl(8), 0.8)], + [(solarize_impl(3), 0.6), (vision.Equalize(), 0.6)], + [(posterize_impl(5), 0.8), (vision.Equalize(), 1.0)], [(rotate_impl(3), 0.2), (solarize_impl(8), 0.6)], - [(c_vision.Equalize(), 0.6), (posterize_impl(6), 0.4)], + [(vision.Equalize(), 0.6), (posterize_impl(6), 0.4)], [(rotate_impl(8), 0.8), (color_impl(0), 0.4)], - [(rotate_impl(9), 0.4), (c_vision.Equalize(), 0.6)], - [(c_vision.Equalize(), 0.0), (c_vision.Equalize(), 0.8)], - [(c_vision.Invert(), 0.6), (c_vision.Equalize(), 1.0)], + [(rotate_impl(9), 0.4), (vision.Equalize(), 0.6)], + [(vision.Equalize(), 0.0), (vision.Equalize(), 0.8)], + [(vision.Invert(), 0.6), (vision.Equalize(), 1.0)], [(color_impl(4), 0.6), (contrast_impl(8), 1.0)], [(rotate_impl(8), 0.8), (color_impl(2), 1.0)], [(color_impl(8), 0.8), (solarize_impl(7), 0.8)], - [(sharpness_impl(7), 0.4), (c_vision.Invert(), 0.6)], - [(shear_x(5), 0.6), (c_vision.Equalize(), 1.0)], - [(color_impl(0), 0.4), (c_vision.Equalize(), 0.6)], + [(sharpness_impl(7), 0.4), (vision.Invert(), 0.6)], + [(shear_x(5), 0.6), (vision.Equalize(), 1.0)], + [(color_impl(0), 0.4), (vision.Equalize(), 0.6)], - [(c_vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], + [(vision.Equalize(), 0.4), (solarize_impl(4), 0.2)], [(solarize_impl(5), 0.6), (autocontrast_impl(5), 0.6)], - [(c_vision.Invert(), 0.6), (c_vision.Equalize(), 1.0)], + [(vision.Invert(), 0.6), (vision.Equalize(), 1.0)], [(color_impl(4), 0.6), (contrast_impl(8), 1.0)], - [(c_vision.Equalize(), 0.8), (c_vision.Equalize(), 0.6)], + [(vision.Equalize(), 0.8), (vision.Equalize(), 0.6)], ] @@ -153,19 +153,19 @@ def autoaugment(dataset_path, repeat_num=1, batch_size=32, target="Ascend"): mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] std = [0.229 * 255, 0.224 * 255, 0.225 * 255] trans = [ - c_vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), + vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), ] post_trans = [ - c_vision.RandomHorizontalFlip(prob=0.5), - c_vision.Normalize(mean=mean, std=std), - c_vision.HWC2CHW() + vision.RandomHorizontalFlip(prob=0.5), + vision.Normalize(mean=mean, std=std), + vision.HWC2CHW() ] dataset = ds.map(operations=trans, input_columns="image") - dataset = dataset.map(operations=c_vision.RandomSelectSubpolicy(imagenet_policy), input_columns=["image"]) + dataset = dataset.map(operations=vision.RandomSelectSubpolicy(imagenet_policy), input_columns=["image"]) dataset = dataset.map(operations=post_trans, input_columns="image") - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) dataset = dataset.map(operations=type_cast_op, input_columns="label") # apply the batch operation dataset = dataset.batch(batch_size, drop_remainder=True) diff --git a/research/cv/glore_res/src/dataset.py b/research/cv/glore_res/src/dataset.py index b7a5fdc9cd2e7db8f4c211d7521ee15a5c00a9fd..9a6ecc0d0e588ca9d97dfed114b7f3ecc4a5169e 100644 --- a/research/cv/glore_res/src/dataset.py +++ b/research/cv/glore_res/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,9 +18,9 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.dataset.vision import Inter -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size from src.transform import RandAugment from src.config import config diff --git a/research/cv/glore_res/src/transform.py b/research/cv/glore_res/src/transform.py index cba6ea73a65fe5d5e86318557250ffb140476c1f..83939be14781fa1a5b732c56402a7b6f3131d683 100644 --- a/research/cv/glore_res/src/transform.py +++ b/research/cv/glore_res/src/transform.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ random augment class """ import numpy as np -import mindspore.dataset.vision.py_transforms as P +import mindspore.dataset.vision as V from src import transform_utils IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) @@ -37,9 +37,9 @@ class RandAugment: # assert the imgs object are pil_images ret_imgs = [] ret_labels = [] - py_to_pil_op = P.ToPIL() - to_tensor = P.ToTensor() - normalize_op = P.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + py_to_pil_op = V.ToPIL() + to_tensor = V.ToTensor() + normalize_op = V.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) rand_augment_ops = transform_utils.rand_augment_transform(self.config_str, self.hparams) for i, image in enumerate(imgs): img_pil = py_to_pil_op(image) diff --git a/research/cv/hardnet/src/dataset.py b/research/cv/hardnet/src/dataset.py index 1955ca545d75e0966ae857f2ad35cdc649079b87..2270337531998e20c58d822f8b6aac5a1e135c69 100644 --- a/research/cv/hardnet/src/dataset.py +++ b/research/cv/hardnet/src/dataset.py @@ -18,8 +18,8 @@ Data operations, will be used in train.py and eval.py import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size def create_dataset_ImageNet(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): diff --git a/research/cv/hed/src/dataset.py b/research/cv/hed/src/dataset.py index a74551d2aab600bfbebc6357f094e538e1639ff2..842d1438d851621426976f7cf95dd54931f6727d 100644 --- a/research/cv/hed/src/dataset.py +++ b/research/cv/hed/src/dataset.py @@ -19,8 +19,8 @@ import cv2 import numpy as np import mindspore import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C2 -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as C2 +import mindspore.dataset.transforms as C mindspore.set_seed(1) def prepare_image_cv2(im): diff --git a/research/cv/ibnnet/src/dataset.py b/research/cv/ibnnet/src/dataset.py index fef7aae68e50e69fa0cd13ec5b54ac530a96dfc3..62c6c43086cf387b4bd4df7c0971b0462c95d0ba 100644 --- a/research/cv/ibnnet/src/dataset.py +++ b/research/cv/ibnnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ python dataset.py import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/inception_resnet_v2/src/dataset.py b/research/cv/inception_resnet_v2/src/dataset.py index 81912007bd471b663a28440263224fd9aac8139e..0316efc28c76ad304aa131de728577d51c4c4ee8 100644 --- a/research/cv/inception_resnet_v2/src/dataset.py +++ b/research/cv/inception_resnet_v2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, config=None): diff --git a/research/cv/lresnet100e_ir/src/dataset.py b/research/cv/lresnet100e_ir/src/dataset.py index d0ddade90076aba1303ec1d89e707e554f01579a..a03dadfb5b2741fd22c27bbb09ef7700095e5364 100644 --- a/research/cv/lresnet100e_ir/src/dataset.py +++ b/research/cv/lresnet100e_ir/src/dataset.py @@ -15,8 +15,8 @@ """Create train or eval dataset.""" import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 def create_dataset(dataset_path, do_train, img_shape, repeat_num=1, batch_size=32, run_distribute=False): diff --git a/research/cv/mae/src/datasets/dataset.py b/research/cv/mae/src/datasets/dataset.py index d1bcd1664367603182f55a53c46607db525495cd..bb9ab3112f5f5067c017d601042f8adea794fc7d 100644 --- a/research/cv/mae/src/datasets/dataset.py +++ b/research/cv/mae/src/datasets/dataset.py @@ -23,9 +23,8 @@ import numpy as np import mindspore.dataset as de import mindspore.common.dtype as mstype from mindspore.dataset.vision.utils import Inter -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.vision.py_transforms as P -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from src.datasets.mixup import Mixup from src.datasets.random_erasing import RandomErasing @@ -111,12 +110,12 @@ def create_dataset(dataset_path, C.RandomCropDecodeResize(image_size, scale=(crop_min, 1.0), ratio=(3 / 4, 4 / 3), interpolation=interpolation), C.RandomHorizontalFlip(prob=hflip), - P.ToPIL() + C.ToPIL() ] trans += [rand_augment_transform(auto_augment, aa_params)] trans += [ - P.ToTensor(), - P.Normalize(mean=mean, std=std), + C.ToTensor(), + C.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(probability=re_prop, mode=re_mode, max_count=re_count) ] @@ -127,7 +126,7 @@ def create_dataset(dataset_path, C.Decode(), C.Resize(int(256 / 224 * image_size), interpolation=interpolation), C.CenterCrop(image_size), - C.Normalize(mean=mean, std=std), + C.Normalize(mean=mean, std=std, is_hwc=True), C.HWC2CHW() ] diff --git a/research/cv/mae/src/datasets/imagenet.py b/research/cv/mae/src/datasets/imagenet.py index 3c6894daa3ae7e4d7f784bd41e189c8938024653..e39fc40c60d62f76cf4fe91ef142b8c177fa2fd1 100644 --- a/research/cv/mae/src/datasets/imagenet.py +++ b/research/cv/mae/src/datasets/imagenet.py @@ -21,7 +21,7 @@ from PIL import Image import mindspore.dataset as de from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C class DataLoader: diff --git a/research/cv/meta-baseline/src/data/mini_Imagenet.py b/research/cv/meta-baseline/src/data/mini_Imagenet.py index 23275afed98641009ece17460e7decff67f4bd27..da52ceda55b08f6f6a7fb82cc1bf837330a978bf 100644 --- a/research/cv/meta-baseline/src/data/mini_Imagenet.py +++ b/research/cv/meta-baseline/src/data/mini_Imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ MiniImageNet import os import pickle import numpy as np -import mindspore.dataset.vision.py_transforms as py_transforms -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from PIL import Image @@ -45,19 +45,19 @@ class MiniImageNet: label = [x - min_label for x in label] image_size = 84 - normalize = py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + normalize = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) if split == 'train': self.transforms = Compose([ decode, - py_transforms.RandomCrop(image_size, padding=4), - py_transforms.ToTensor(), + vision.RandomCrop(image_size, padding=4), + vision.ToTensor(), normalize ]) else: self.transforms = Compose([ decode, - py_transforms.Resize(image_size), - py_transforms.ToTensor(), + vision.Resize(image_size), + vision.ToTensor(), normalize ]) data = [self.transforms(x)[0] for x in data] diff --git a/research/cv/metric_learn/src/dataset.py b/research/cv/metric_learn/src/dataset.py index 882363fd01e93aeb2e5a8d558c78c3b492311149..f2d4b75d48467d6036099d529a59fe3b62189038 100644 --- a/research/cv/metric_learn/src/dataset.py +++ b/research/cv/metric_learn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ create train or eval dataset. """ import mindspore.common.dtype as mstype import mindspore.dataset as dss -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.vision import Inter def create_dataset0(dataset_generator, do_train, batch_size=80, device_num=1, rank_id=0): diff --git a/research/cv/mnasnet/src/dataset.py b/research/cv/mnasnet/src/dataset.py index e9797e9aedd901fe6a54710a8d5b0375e0ec2c8a..191a15a4d3f03c941749557d795976123638a408 100644 --- a/research/cv/mnasnet/src/dataset.py +++ b/research/cv/mnasnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ Data operations, will be used in train.py and eval.py """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/research/cv/mobilenetV3_small_x1_0/src/dataset.py b/research/cv/mobilenetV3_small_x1_0/src/dataset.py index 5d3dd274e503138c5018acb3b539996858f76c5c..62665403953b26a8264024c65cb4f3eb1ea536e0 100644 --- a/research/cv/mobilenetV3_small_x1_0/src/dataset.py +++ b/research/cv/mobilenetV3_small_x1_0/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import multiprocessing import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0): diff --git a/research/cv/mobilenetv3_large/src/dataset.py b/research/cv/mobilenetv3_large/src/dataset.py index 49ebdacc5adce53891d73e564aacfea6254947a1..eb28ad6ea1f9cf05e49b72e9e8d6d333338426e6 100644 --- a/research/cv/mobilenetv3_large/src/dataset.py +++ b/research/cv/mobilenetv3_large/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,8 +15,8 @@ """Create train or eval dataset.""" import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import get_rank, get_group_size def create_dataset(dataset_path, do_train, config, repeat_num=1, batch_size=32, run_distribute=True): diff --git a/research/cv/nas-fpn/src/dataset.py b/research/cv/nas-fpn/src/dataset.py index 36c018347bc367a002be96df7259cc415c4fe37d..239d7de558faff4287c2304cef90894dc9d6f1b4 100644 --- a/research/cv/nas-fpn/src/dataset.py +++ b/research/cv/nas-fpn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ import os import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from src.model_utils.config import config from src.box_utils import jaccard_numpy, retinanet_bboxes_encode diff --git a/research/cv/nima_vgg16/src/MyDataset.py b/research/cv/nima_vgg16/src/MyDataset.py index 36b8e9b80a52e9ee9477fc7dd1d16f9a55a9a8bc..39f7bb1d56e95ce55b05b3eb71dfdf583e476946 100644 --- a/research/cv/nima_vgg16/src/MyDataset.py +++ b/research/cv/nima_vgg16/src/MyDataset.py @@ -20,9 +20,9 @@ import cv2 import numpy as np from mindspore import dataset as ds from mindspore import dtype as mstype -from mindspore.dataset.transforms import c_transforms as t_ct +from mindspore.dataset.transforms import transforms as t_ct from mindspore.dataset.vision import Inter -from mindspore.dataset.vision import c_transforms as v_ct +from mindspore.dataset.vision import transforms as v_ct class Dataset: diff --git a/research/cv/ntsnet/src/dataset.py b/research/cv/ntsnet/src/dataset.py index 9e0d068d010fd17575313aacc106aa16ac502ae1..6b1d0d0170ce37ea8640c7a2feeb45ed3120b42e 100644 --- a/research/cv/ntsnet/src/dataset.py +++ b/research/cv/ntsnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """ntsnet dataset""" import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.vision as vision from mindspore.dataset.vision import Inter diff --git a/research/cv/ntsnet/src/dataset_gpu.py b/research/cv/ntsnet/src/dataset_gpu.py index a33d39d761a84d024095d7af8f95b02111e2655b..daab745cbdec86576bb535d8f5bbb6bee38fad2b 100644 --- a/research/cv/ntsnet/src/dataset_gpu.py +++ b/research/cv/ntsnet/src/dataset_gpu.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.vision as vision from mindspore.dataset.vision import Inter from src.config_gpu import config diff --git a/research/cv/osnet/model_utils/transforms.py b/research/cv/osnet/model_utils/transforms.py index 779d5e89f21ff81f237d3a2a9f9c6d3c872a5271..d1fd32e60ece5f9368096d4013e4292fcb4c3643 100644 --- a/research/cv/osnet/model_utils/transforms.py +++ b/research/cv/osnet/model_utils/transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License Version 2.0(the "License"); # you may not use this file except in compliance with the License. @@ -17,8 +17,8 @@ import math import random -from mindspore.dataset.vision.c_transforms import Resize, Rescale, Normalize, HWC2CHW, RandomHorizontalFlip -from mindspore.dataset.transforms.c_transforms import Compose +from mindspore.dataset.vision import Resize, Rescale, Normalize, HWC2CHW, RandomHorizontalFlip +from mindspore.dataset.transforms import Compose class RandomErasing(): diff --git a/research/cv/pcb_rpp/src/dataset.py b/research/cv/pcb_rpp/src/dataset.py index 6cc9119771af38ddcc1ad8c82c80ec797bf846f3..04214054ae7902338d74fd0accab6185bcdfa2b8 100644 --- a/research/cv/pcb_rpp/src/dataset.py +++ b/research/cv/pcb_rpp/src/dataset.py @@ -24,9 +24,9 @@ import numpy as np from mindspore import dataset as ds from mindspore.common import dtype as mstype from mindspore.communication.management import init, get_rank, get_group_size -from mindspore.dataset.transforms import c_transforms as C2 +from mindspore.dataset.transforms import transforms as C2 from mindspore.dataset.vision import Inter -from mindspore.dataset.vision import c_transforms as C +from mindspore.dataset.vision import transforms as C from mindspore.mindrecord import FileWriter from src import datasets diff --git a/research/cv/pnasnet/src/dataset.py b/research/cv/pnasnet/src/dataset.py index e991ae49528c2f7324ed947d859fe59925147862..e3c8adc1a768c10d2945c0778dae75b42343ffdc 100644 --- a/research/cv/pnasnet/src/dataset.py +++ b/research/cv/pnasnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ Data operations, will be used in train.py and eval.py import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, rank, group_size, num_parallel_workers=8, batch_size=128, diff --git a/research/cv/proxylessnas/src/dataset.py b/research/cv/proxylessnas/src/dataset.py index f8e335f714d48912d2c9be38435c9d50572aa0cf..1bab7079f378c03f48764f5d4bf9cd493802ac60 100644 --- a/research/cv/proxylessnas/src/dataset.py +++ b/research/cv/proxylessnas/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ Data operations, will be used in train.py and eval.py import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, rank, group_size, num_parallel_workers=8, batch_size=128, diff --git a/research/cv/ras/src/dataset_test.py b/research/cv/ras/src/dataset_test.py index 4a6b641385552a7b1e3621c1c20c6929fbbe49af..53e0d2462f277f29bbd2d56b5a7df9a4193f343b 100644 --- a/research/cv/ras/src/dataset_test.py +++ b/research/cv/ras/src/dataset_test.py @@ -1,5 +1,5 @@ """ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import numpy as np -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as ds from PIL import Image diff --git a/research/cv/ras/src/dataset_train.py b/research/cv/ras/src/dataset_train.py index 9e6770e539010c65471f9791c8b99ae3f71b024c..73ae0983037f97951e6730d3879479889ba94c92 100644 --- a/research/cv/ras/src/dataset_train.py +++ b/research/cv/ras/src/dataset_train.py @@ -1,5 +1,5 @@ """ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import os import numpy as np -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C import mindspore.dataset as ds from mindspore.communication import get_rank, get_group_size from PIL import Image diff --git a/research/cv/rcnn/eval.py b/research/cv/rcnn/eval.py index d1632783169f4ef237931a8fe869de57b4850456..cc34f042deb64ad1398afc5776c3c7fded796466 100644 --- a/research/cv/rcnn/eval.py +++ b/research/cv/rcnn/eval.py @@ -25,7 +25,7 @@ from operator import itemgetter import cv2 import mindspore import mindspore.dataset -import mindspore.dataset.vision.c_transforms as c_trans +import mindspore.dataset.vision as c_trans from mindspore import load_param_into_net, load_checkpoint, ops import numpy as np from tqdm import tqdm diff --git a/research/cv/relationnet/src/dataset.py b/research/cv/relationnet/src/dataset.py index 02c86b0a3b228516d94a42ec0ee7a4fcf305b7d7..516f3c3b37881dc623d5a723ca2e32f5928e1687 100644 --- a/research/cv/relationnet/src/dataset.py +++ b/research/cv/relationnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ import random import os from PIL import Image import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose from mindspore import Tensor @@ -176,8 +176,8 @@ class ClassBalancedSampler(): def get_data_loader(task, num_per_class=1, split='train', shuffle=True, rotation=0, flip=None): '''get dataloader''' mean, std = [0.92206], [0.08426] - transform = Compose([py_vision.ToTensor(), # numpy HWC-> Tensor CHW - py_vision.Normalize(mean=mean, std=std)]) + transform = Compose([vision.ToTensor(), # numpy HWC-> Tensor CHW + vision.Normalize(mean=mean, std=std, is_hwc=False)]) dataset = Omniglot(task, split=split, transform=transform, rotation=rotation, flip=flip) if split == 'train': diff --git a/research/cv/renas/src/dataset.py b/research/cv/renas/src/dataset.py index c411d5b707688bee9da8dc53c1891611ee205fd8..899927a4c8cacca4160fca6ef6a33637164c608e 100644 --- a/research/cv/renas/src/dataset.py +++ b/research/cv/renas/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,14 +17,12 @@ import math import os import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.transforms.c_transforms as c_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as vision # values that should remain constant @@ -55,24 +53,24 @@ def create_dataset(batch_size, train_data_url='', workers=8, distributed=False, """Create ImageNet training dataset""" if not os.path.exists(train_data_url): raise ValueError('Path not exists') - decode_op = py_vision.Decode() - type_cast_op = c_transforms.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + type_cast_op = data_trans.TypeCast(mstype.int32) - random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size), - scale=SCALE, ratio=RATIO, - interpolation=Inter.BICUBIC) - random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5) + random_resize_crop_bicubic = vision.RandomResizedCrop(size=(input_size, input_size), + scale=SCALE, ratio=RATIO, + interpolation=Inter.BICUBIC) + random_horizontal_flip_op = vision.RandomHorizontalFlip(0.5) adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter) - random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range, - contrast=adjust_range, - saturation=adjust_range) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + random_color_jitter_op = vision.RandomColorAdjust(brightness=adjust_range, + contrast=adjust_range, + saturation=adjust_range) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) # assemble all the transforms - image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic, - random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, random_resize_crop_bicubic, + random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) rank_id = get_rank() if distributed else 0 rank_size = get_group_size() if distributed else 1 @@ -121,16 +119,16 @@ def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=F else: scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT)) - type_cast_op = c_transforms.TypeCast(mstype.int32) - decode_op = py_vision.Decode() - resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) - center_crop = py_vision.CenterCrop(size=input_size) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + type_cast_op = data_trans.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + resize_op = vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) + center_crop = vision.CenterCrop(size=input_size) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) - image_ops = py_transforms.Compose([decode_op, resize_op, center_crop, - to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, resize_op, center_crop, + to_tensor, normalize_op]) dataset = dataset.map(input_columns=["label"], operations=type_cast_op, num_parallel_workers=workers) @@ -176,9 +174,9 @@ def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=Non random_horizontal_op = vision.RandomHorizontalFlip() resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR rescale_op = vision.Rescale(1.0 / 255.0, 0.0) - normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) + normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010), is_hwc=True) changeswap_op = vision.HWC2CHW() - type_cast_op = c_transforms.TypeCast(mstype.int32) + type_cast_op = data_trans.TypeCast(mstype.int32) c_trans = [] if training: diff --git a/research/cv/repvgg/src/data/imagenet.py b/research/cv/repvgg/src/data/imagenet.py index fabaef2597743796f2e2c9259ec7602733fbb4c8..c8a6762f2c9da1b5191db146596be9572f92b202 100644 --- a/research/cv/repvgg/src/data/imagenet.py +++ b/research/cv/repvgg/src/data/imagenet.py @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import pil_interp, rand_augment_transform @@ -93,13 +92,13 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.PILCUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] if auto_augment != "None": transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: diff --git a/research/cv/res2net/src/dataset.py b/research/cv/res2net/src/dataset.py index 3959fd2667c77995768061383611c6cc66dcc38b..8b4ee28f5b5ffa2069903c67e2232012d54b521a 100644 --- a/research/cv/res2net/src/dataset.py +++ b/research/cv/res2net/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import multiprocessing import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, train_image_size=224, eval_image_size=224, diff --git a/research/cv/res2net/src/dataset_infer.py b/research/cv/res2net/src/dataset_infer.py index 98114b7c77192f15fa3ecc15f9740df544581ed6..1b894af182479286c80b2f543673bad5f0cf2ba3 100644 --- a/research/cv/res2net/src/dataset_infer.py +++ b/research/cv/res2net/src/dataset_infer.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size from src.model_utils.config import config diff --git a/research/cv/res2net_faster_rcnn/src/dataset.py b/research/cv/res2net_faster_rcnn/src/dataset.py index 09045245818d5fdf29ecd2f62b7d054e97b97b5a..7e7c421b707066d2a7782407cb12f54ed36a3afc 100644 --- a/research/cv/res2net_faster_rcnn/src/dataset.py +++ b/research/cv/res2net_faster_rcnn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,7 +22,7 @@ from numpy import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter diff --git a/research/cv/res2net_yolov3/src/yolo_dataset.py b/research/cv/res2net_yolov3/src/yolo_dataset.py index 6dac2bad3c32ce104083896af4ff28c6e21c292c..b97fd5e83f9697c2eb5d2c385c36584150005c2f 100644 --- a/research/cv/res2net_yolov3/src/yolo_dataset.py +++ b/research/cv/res2net_yolov3/src/yolo_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -21,7 +21,7 @@ from PIL import Image import numpy as np from pycocotools.coco import COCO import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV from src.distributed_sampler import DistributedSampler from src.transforms import reshape_fn, MultiScaleTrans diff --git a/research/cv/resnet3d/src/dataset.py b/research/cv/resnet3d/src/dataset.py index 4bfffda6be2dfa8e22bf0bdf2af08b064050c28f..f5034cee227087c1b75357bc45917f8c7628559c 100644 --- a/research/cv/resnet3d/src/dataset.py +++ b/research/cv/resnet3d/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import os import mindspore.dataset as ds import mindspore.common.dtype as mstype -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.transforms as C2 from mindspore.communication.management import get_rank, get_group_size from .videodataset import DatasetGenerator diff --git a/research/cv/resnet3d/src/pil_transforms.py b/research/cv/resnet3d/src/pil_transforms.py index 270a3e3fba53e69c0e9c10fa1457b7b0aa7515f2..cfd0f0fa7166370eef969ea9fc8bc816d4f4c0dd 100644 --- a/research/cv/resnet3d/src/pil_transforms.py +++ b/research/cv/resnet3d/src/pil_transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ transforms by PIL. """ import numpy as np -import mindspore.dataset.vision.py_transforms as py_trans +import mindspore.dataset.vision as vision class PILTrans: @@ -27,16 +27,16 @@ class PILTrans: def __init__(self, opt, mean, std): super(PILTrans).__init__() - self.to_pil = py_trans.ToPIL() + self.to_pil = vision.ToPIL() self.random_resized_crop = \ - py_trans.RandomResizedCrop(opt.sample_size, scale=(opt.train_crop_min_scale, 1.0), - ratio=(opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio)) - self.random_horizontal_flip = py_trans.RandomHorizontalFlip(prob=0.5) - self.color = py_trans.RandomColorAdjust(0.4, 0.4, 0.4, 0.1) - self.normalize = py_trans.Normalize(mean=mean, std=std) - self.to_tensor = py_trans.ToTensor() - self.resize = py_trans.Resize(opt.sample_size) - self.center_crop = py_trans.CenterCrop(opt.sample_size) + vision.RandomResizedCrop(opt.sample_size, scale=(opt.train_crop_min_scale, 1.0), + ratio=(opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio)) + self.random_horizontal_flip = vision.RandomHorizontalFlip(prob=0.5) + self.color = vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1) + self.normalize = vision.Normalize(mean=mean, std=std, is_hwc=False) + self.to_tensor = vision.ToTensor() + self.resize = vision.Resize(opt.sample_size) + self.center_crop = vision.CenterCrop(opt.sample_size) self.opt = opt def __call__(self, data, labels, batchInfo): @@ -72,11 +72,11 @@ class EvalPILTrans: def __init__(self, opt, mean, std): super(EvalPILTrans).__init__() - self.to_pil = py_trans.ToPIL() - self.resize = py_trans.Resize(opt.sample_size) - self.center_crop = py_trans.CenterCrop(opt.sample_size) - self.normalize = py_trans.Normalize(mean=mean, std=std) - self.to_tensor = py_trans.ToTensor() + self.to_pil = vision.ToPIL() + self.resize = vision.Resize(opt.sample_size) + self.center_crop = vision.CenterCrop(opt.sample_size) + self.normalize = vision.Normalize(mean=mean, std=std, is_hwc=False) + self.to_tensor = vision.ToTensor() def __call__(self, data, labels, batchInfo): data = data[0] diff --git a/research/cv/resnet50_adv_pruning/src/pet_dataset.py b/research/cv/resnet50_adv_pruning/src/pet_dataset.py index 8eb9eaecc7513db7c401cd0c52f644c7d2c9ff39..de6adced75425be8b04a333af8825b9d0805a95c 100644 --- a/research/cv/resnet50_adv_pruning/src/pet_dataset.py +++ b/research/cv/resnet50_adv_pruning/src/pet_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,10 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.vision.py_transforms as P -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.transforms.py_transforms as P2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.dataset.vision import Inter @@ -74,12 +72,12 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch change_swap_op = C.HWC2CHW() # define python operations - decode_p = P.Decode() - resize_p = P.Resize(256, interpolation=Inter.BILINEAR) - center_crop_p = P.CenterCrop(224) - totensor = P.ToTensor() - normalize_p = P.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) - composeop = P2.Compose( + decode_p = C.Decode(True) + resize_p = C.Resize(256, interpolation=Inter.BILINEAR) + center_crop_p = C.CenterCrop(224) + totensor = C.ToTensor() + normalize_p = C.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225), is_hwc=False) + composeop = C2.Compose( [decode_p, resize_p, center_crop_p, totensor, normalize_p]) if do_train: trans = [resize_crop_op, horizontal_flip_op, color_op, diff --git a/research/cv/resnet50_bam/src/dataset.py b/research/cv/resnet50_bam/src/dataset.py index db662754fa1173ef90c1530519e24211b70ce106..6ec6428d7e365615c51dd49d0035c0b843caf062 100644 --- a/research/cv/resnet50_bam/src/dataset.py +++ b/research/cv/resnet50_bam/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.config import imagenet_cfg diff --git a/research/cv/resnetv2/src/dataset.py b/research/cv/resnetv2/src/dataset.py index 784e564e904db05ac81a47410b13aeacfdbe36b7..cb3ff1d68a47fbdb27991d5909d70251f05d5021 100644 --- a/research/cv/resnetv2/src/dataset.py +++ b/research/cv/resnetv2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,8 +16,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size def create_dataset1(dataset_path, do_train=True, repeat_num=1, batch_size=32, target="Ascend", distribute=False): diff --git a/research/cv/resnetv2_50_frn/src/dataset.py b/research/cv/resnetv2_50_frn/src/dataset.py index 97221b5b5a95d134543663bfc76c4d118f694cbc..b1166b11c3482f3ff5a0a8e69a1b67363002e7d7 100644 --- a/research/cv/resnetv2_50_frn/src/dataset.py +++ b/research/cv/resnetv2_50_frn/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ Data operations, will be used in train.py and eval.py import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_dataset(dataset_path, do_train, rank, group_size, num_parallel_workers=8, batch_size=128, diff --git a/research/cv/resnext152_64x4d/src/dataset.py b/research/cv/resnext152_64x4d/src/dataset.py index 712bd775a4224bbd4de38e66513116439c5b89c2..b7f1534e65f25ce38331e2e28d67260bd5995aa4 100644 --- a/research/cv/resnext152_64x4d/src/dataset.py +++ b/research/cv/resnext152_64x4d/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ dataset processing. import os from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as V_C +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as V_C from PIL import Image, ImageFile from src.utils.sampler import DistributedSampler diff --git a/research/cv/retinanet_resnet101/src/dataset.py b/research/cv/retinanet_resnet101/src/dataset.py index 375f5337b2b02f0dcecccbb1172e03fcbb0d0cf8..d86f6d8fdc180fb0dd4e8503d7a261818128ed4e 100644 --- a/research/cv/retinanet_resnet101/src/dataset.py +++ b/research/cv/retinanet_resnet101/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .model_utils.config import config from .box_utils import jaccard_numpy, retinanet_bboxes_encode diff --git a/research/cv/retinanet_resnet152/src/dataset.py b/research/cv/retinanet_resnet152/src/dataset.py index f1dad5f446e0c7273ae567cb09e2080c2b3c9006..f9f186612bb290ddf1d739b8101dde24963c641a 100644 --- a/research/cv/retinanet_resnet152/src/dataset.py +++ b/research/cv/retinanet_resnet152/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .model_utils.config import config from .box_utils import jaccard_numpy, retinanet_bboxes_encode diff --git a/research/cv/rfcn/src/dataset.py b/research/cv/rfcn/src/dataset.py index a148b7fd3def37488b26ab4e9b7e869d1dd1d602..dcc009b196ad9b45bb3f049e3e1c10ae550c20d1 100644 --- a/research/cv/rfcn/src/dataset.py +++ b/research/cv/rfcn/src/dataset.py @@ -23,7 +23,7 @@ from numpy import random import cv2 from PIL import Image import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter def bbox_overlaps(bboxes1, bboxes2, mode='iou'): diff --git a/research/cv/simple_baselines/src/dataset.py b/research/cv/simple_baselines/src/dataset.py index 84796c054dd469228b9c908f171e2c42609f1fae..af06907cb88e89bc378c0c32b8e76e56fff3d352 100644 --- a/research/cv/simple_baselines/src/dataset.py +++ b/research/cv/simple_baselines/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -26,7 +26,7 @@ import numpy as np import cv2 import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from src.utils.transforms import fliplr_joints, get_affine_transform, affine_transform ds.config.set_seed(1) # Set Random Seed diff --git a/research/cv/single_path_nas/src/dataset.py b/research/cv/single_path_nas/src/dataset.py index ac51ad69e82410668aef968c4396d816be056806..eac12de2437640d1d3b8fd26ae1c31cd8527b493 100644 --- a/research/cv/single_path_nas/src/dataset.py +++ b/research/cv/single_path_nas/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ Data operations, will be used in train.py and eval.py import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.config import imagenet_cfg diff --git a/research/cv/sknet/src/dataset.py b/research/cv/sknet/src/dataset.py index 7a67fb74ad1e0e7a9aca3d8cd79ab67a9118c98b..611a937369723682f2ba4312b5f715b8c0f15c05 100644 --- a/research/cv/sknet/src/dataset.py +++ b/research/cv/sknet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C from mindspore.communication.management import get_group_size, get_rank, init diff --git a/research/cv/squeezenet/src/dataset.py b/research/cv/squeezenet/src/dataset.py index 38eaef30f308abc0c3c1ba6d1a4e7144751bcfaf..e778661b4519b989aa1e83f0b92d5e9893b205b0 100644 --- a/research/cv/squeezenet/src/dataset.py +++ b/research/cv/squeezenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/squeezenet1_1/src/dataset.py b/research/cv/squeezenet1_1/src/dataset.py index 81bf48ced9b8329d2ec735917480ea0f6c68b05d..033f8a699d73d62823988d2f4c33d39bd4354dbf 100644 --- a/research/cv/squeezenet1_1/src/dataset.py +++ b/research/cv/squeezenet1_1/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,8 +18,8 @@ create train or eval dataset of imagenet and cifar10. import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 def create_dataset_imagenet(dataset_path, do_train, diff --git a/research/cv/ssc_resnet50/src/dataset.py b/research/cv/ssc_resnet50/src/dataset.py index 3ef167ceb465767f1f4f7f41ea846daab0dcf00b..b714dbee4a3ae85e55a3a42aff4dbff56462167a 100644 --- a/research/cv/ssc_resnet50/src/dataset.py +++ b/research/cv/ssc_resnet50/src/dataset.py @@ -23,8 +23,8 @@ import logging import numpy as np from PIL import Image from PIL import ImageFile -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_trans +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.ops import mindspore.dataset as de @@ -91,12 +91,12 @@ class CoMatchDatasetImageNet: self.samples = samples logging.info("sample len: %d", len(self.samples)) - self.random_resize_crop = py_vision.RandomResizedCrop(224, scale=(0.2, 1.)) - self.random_horizontal_flip = py_vision.RandomHorizontalFlip() - self.to_tensor = py_vision.ToTensor() - self.normalize = py_vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) - self.random_apply = py_trans.RandomApply([py_vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1)], prob=0.8) - self.random_grayscale = py_vision.RandomGrayscale(prob=0.2) + self.random_resize_crop = vision.RandomResizedCrop(224, scale=(0.2, 1.)) + self.random_horizontal_flip = vision.RandomHorizontalFlip() + self.to_tensor = vision.ToTensor() + self.normalize = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) + self.random_apply = data_trans.RandomApply([vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1)], prob=0.8) + self.random_grayscale = vision.RandomGrayscale(prob=0.2) self.unlable_randomaugmentMC = RandAugmentMC(int(args.unlabel_randomaug_count), int(args.unlabel_randomaug_intensity)) @@ -297,10 +297,10 @@ class CoMatchDatasetImageNetTest: logging.info("sample len: %d", len(self.samples)) # for test - self.resize = py_vision.Resize(256) - self.center_crop = py_vision.CenterCrop(224) - self.to_tensor = py_vision.ToTensor() - self.normalize = py_vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + self.resize = vision.Resize(256) + self.center_crop = vision.CenterCrop(224) + self.to_tensor = vision.ToTensor() + self.normalize = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) def __getitem__(self, index): """ @@ -362,11 +362,11 @@ class CoMatchSelectSample: self.samples = samples # for test - self.random_resize_crop = py_vision.RandomResizedCrop(224, scale=(0.2, 1.)) - self.random_horizontal_flip = py_vision.RandomHorizontalFlip() + self.random_resize_crop = vision.RandomResizedCrop(224, scale=(0.2, 1.)) + self.random_horizontal_flip = vision.RandomHorizontalFlip() - self.to_tensor = py_vision.ToTensor() - self.normalize = py_vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + self.to_tensor = vision.ToTensor() + self.normalize = vision.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], is_hwc=False) def __getitem__(self, index): """ diff --git a/research/cv/ssd_ghostnet/src/dataset.py b/research/cv/ssd_ghostnet/src/dataset.py index 0350fe910a3970b873466a5e5c543391181b8a9a..8eb7fa4dcfb311ade7a185c87b0de78d96d66a77 100644 --- a/research/cv/ssd_ghostnet/src/dataset.py +++ b/research/cv/ssd_ghostnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C2 +import mindspore.dataset.vision as C2 from mindspore.mindrecord import FileWriter from src.model_utils.config import config from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_inception_v2/src/dataset.py b/research/cv/ssd_inception_v2/src/dataset.py index 0c08dbae5701b6bed776d521ba6ed1591780ea3c..ebeaf3774edd9e416b1a0249965e4e2d629b237b 100644 --- a/research/cv/ssd_inception_v2/src/dataset.py +++ b/research/cv/ssd_inception_v2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -25,7 +25,7 @@ import xml.etree.ElementTree as et import cv2 import numpy as np from mindspore import dataset as de -from mindspore.dataset.vision import c_transforms as C +from mindspore.dataset.vision import transforms as C from mindspore.mindrecord import FileWriter from src.model_utils.config import config diff --git a/research/cv/ssd_inceptionv2/src/dataset.py b/research/cv/ssd_inceptionv2/src/dataset.py index d6aa4ee1bdcbe762e0a3adf8bd939a40f7d53b3d..1a0d2cb717d18532465ee3855e537abffe65f8ad 100644 --- a/research/cv/ssd_inceptionv2/src/dataset.py +++ b/research/cv/ssd_inceptionv2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .config import config from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_mobilenetV2/src/dataset.py b/research/cv/ssd_mobilenetV2/src/dataset.py index 9b665fa0670aff7175820132c33b254b0c011abc..c3ab4b7fa63acd4b2e044c2a05bbf56a0cc38142 100644 --- a/research/cv/ssd_mobilenetV2/src/dataset.py +++ b/research/cv/ssd_mobilenetV2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .config import config from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_mobilenetV2_FPNlite/src/dataset.py b/research/cv/ssd_mobilenetV2_FPNlite/src/dataset.py index 1e55f901061cf970c0ba2dbf224030b5cb3dcbdd..f0a96bb844b3198370fca7783063c29b039b7beb 100644 --- a/research/cv/ssd_mobilenetV2_FPNlite/src/dataset.py +++ b/research/cv/ssd_mobilenetV2_FPNlite/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -25,7 +25,7 @@ import cv2 from tqdm import tqdm import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from src.model_utils.config import config as cfg from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_resnet34/src/dataset.py b/research/cv/ssd_resnet34/src/dataset.py index 5b2a642557be69456ec1993967ee3148e8e267e8..26d042dec3379057509bc374d7817bda74fb52f6 100644 --- a/research/cv/ssd_resnet34/src/dataset.py +++ b/research/cv/ssd_resnet34/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .config import config from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_resnet50/src/dataset.py b/research/cv/ssd_resnet50/src/dataset.py index a102b4729b1c6d3d6513700467892337975ef0f4..eaed11ad0e4751ed1487c8a664094af01ab76103 100644 --- a/research/cv/ssd_resnet50/src/dataset.py +++ b/research/cv/ssd_resnet50/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -24,7 +24,7 @@ import numpy as np import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .config import config from .box_utils import jaccard_numpy, ssd_bboxes_encode diff --git a/research/cv/ssd_resnet_34/src/dataset.py b/research/cv/ssd_resnet_34/src/dataset.py index 5df5d78dff0c2d3730835d2e13f703907b0ce3d2..d6f8787052aaeadc26e1eb40b3bacf5d856620d5 100644 --- a/research/cv/ssd_resnet_34/src/dataset.py +++ b/research/cv/ssd_resnet_34/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -26,7 +26,7 @@ from xml.etree import ElementTree import cv2 import numpy as np from mindspore import dataset as ds -from mindspore.dataset.vision import c_transforms as C +from mindspore.dataset.vision import transforms as C from mindspore.mindrecord import FileWriter from .box_utils import jaccard_numpy diff --git a/research/cv/stpm/src/dataset.py b/research/cv/stpm/src/dataset.py index e8e337855a9605a99ec479497307b8d134c6c115..6bb77547ce3240d79288db852b737e85424d280a 100644 --- a/research/cv/stpm/src/dataset.py +++ b/research/cv/stpm/src/dataset.py @@ -21,8 +21,8 @@ import numpy as np from PIL import Image import mindspore.dataset as ds from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.py_transforms as py_vision -from mindspore.dataset.transforms.py_transforms import Compose +import mindspore.dataset.vision as vision +from mindspore.dataset.transforms.transforms import Compose class MVTecDataset(): @@ -113,15 +113,15 @@ def createDataset(dataset_path, category, save_sample=False, out_size=256, train std = [0.229, 0.224, 0.225] data_transforms = Compose([ - py_vision.Resize((out_size, out_size), interpolation=Inter.ANTIALIAS), - py_vision.CenterCrop(out_size), - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std) + vision.Resize((out_size, out_size), interpolation=Inter.ANTIALIAS), + vision.CenterCrop(out_size), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False) ]) gt_transforms = Compose([ - py_vision.Resize((out_size, out_size)), - py_vision.CenterCrop(out_size), - py_vision.ToTensor() + vision.Resize((out_size, out_size)), + vision.CenterCrop(out_size), + vision.ToTensor() ]) train_data = MVTecDataset(root=os.path.join(dataset_path, category), diff --git a/research/cv/swin_transformer/src/data/imagenet.py b/research/cv/swin_transformer/src/data/imagenet.py index 522159871905995bfbfca9ec301569df263b868c..f1883aef7f9f9ef819e68ef6b960a3e5e99e919a 100644 --- a/research/cv/swin_transformer/src/data/imagenet.py +++ b/research/cv/swin_transformer/src/data/imagenet.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,9 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision -import mindspore.dataset.vision.py_transforms as py_vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.dataset.vision.utils import Inter from src.data.augment.auto_augment import _pil_interp, rand_augment_transform @@ -94,12 +93,12 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(3 / 4, 4 / 3), interpolation=Inter.BICUBIC), vision.RandomHorizontalFlip(prob=0.5), - py_vision.ToPIL() + vision.ToPIL() ] transform_img += [rand_augment_transform(auto_augment, aa_params)] transform_img += [ - py_vision.ToTensor(), - py_vision.Normalize(mean=mean, std=std), + vision.ToTensor(), + vision.Normalize(mean=mean, std=std, is_hwc=False), RandomErasing(args.re_prob, mode=args.re_mode, max_count=args.re_count) ] else: @@ -111,14 +110,14 @@ def create_dataset_imagenet(dataset_dir, args, repeat_num=1, training=True): vision.Decode(), vision.Resize(int(256 / 224 * image_size), interpolation=Inter.BICUBIC), vision.CenterCrop(image_size), - vision.Normalize(mean=mean, std=std), + vision.Normalize(mean=mean, std=std, is_hwc=True), vision.HWC2CHW() ] else: transform_img = [ vision.Decode(), vision.Resize(int(image_size), interpolation=Inter.BICUBIC), - vision.Normalize(mean=mean, std=std), + vision.Normalize(mean=mean, std=std, is_hwc=True), vision.HWC2CHW() ] diff --git a/research/cv/textfusenet/src/dataset.py b/research/cv/textfusenet/src/dataset.py index 47479f06b6ece7b30bfc858303705676718e14cb..a406408b328cdc5a73a42e6e25dca606bdf6ca53 100755 --- a/research/cv/textfusenet/src/dataset.py +++ b/research/cv/textfusenet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -22,7 +22,7 @@ from numpy import random import cv2 import mmcv import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter from .model_utils.config import config diff --git a/research/cv/tinynet/src/dataset.py b/research/cv/tinynet/src/dataset.py index cf49192e7300729b67668a93a54e88a56c515295..b2c001d542c7491ce26a8054f9198785a13217ad 100644 --- a/research/cv/tinynet/src/dataset.py +++ b/research/cv/tinynet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,9 +17,8 @@ import math import os import numpy as np -import mindspore.dataset.vision.py_transforms as py_vision -import mindspore.dataset.transforms.py_transforms as py_transforms -import mindspore.dataset.transforms.c_transforms as c_transforms +import mindspore.dataset.vision as vision +import mindspore.dataset.transforms as data_trans import mindspore.common.dtype as mstype import mindspore.dataset as ds from mindspore.communication.management import get_rank, get_group_size @@ -53,24 +52,24 @@ def create_dataset(batch_size, train_data_url='', workers=8, distributed=False, """Create ImageNet training dataset""" if not os.path.exists(train_data_url): raise ValueError('Path not exists') - decode_op = py_vision.Decode() - type_cast_op = c_transforms.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + type_cast_op = data_trans.TypeCast(mstype.int32) - random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size), - scale=SCALE, ratio=RATIO, - interpolation=Inter.BICUBIC) - random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5) + random_resize_crop_bicubic = vision.RandomResizedCrop(size=(input_size, input_size), + scale=SCALE, ratio=RATIO, + interpolation=Inter.BICUBIC) + random_horizontal_flip_op = vision.RandomHorizontalFlip(0.5) adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter) - random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range, - contrast=adjust_range, - saturation=adjust_range) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + random_color_jitter_op = vision.RandomColorAdjust(brightness=adjust_range, + contrast=adjust_range, + saturation=adjust_range) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) # assemble all the transforms - image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic, - random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, random_resize_crop_bicubic, + random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op]) rank_id = get_rank() if distributed else 0 rank_size = get_group_size() if distributed else 1 @@ -119,16 +118,16 @@ def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=F else: scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT)) - type_cast_op = c_transforms.TypeCast(mstype.int32) - decode_op = py_vision.Decode() - resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) - center_crop = py_vision.CenterCrop(size=input_size) - to_tensor = py_vision.ToTensor() - normalize_op = py_vision.Normalize( - IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) + type_cast_op = data_trans.TypeCast(mstype.int32) + decode_op = vision.Decode(True) + resize_op = vision.Resize(size=scale_size, interpolation=Inter.BICUBIC) + center_crop = vision.CenterCrop(size=input_size) + to_tensor = vision.ToTensor() + normalize_op = vision.Normalize( + IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, is_hwc=False) - image_ops = py_transforms.Compose([decode_op, resize_op, center_crop, - to_tensor, normalize_op]) + image_ops = data_trans.Compose([decode_op, resize_op, center_crop, + to_tensor, normalize_op]) dataset = dataset.map(input_columns=["label"], operations=type_cast_op, num_parallel_workers=workers) diff --git a/research/cv/tracktor/src/dataset.py b/research/cv/tracktor/src/dataset.py index 0e2afa850f90d9f44a74137709dac0a7a9144aba..d63c6b1f9d49b3f421b4337f91a8c36670ed1353 100644 --- a/research/cv/tracktor/src/dataset.py +++ b/research/cv/tracktor/src/dataset.py @@ -24,7 +24,7 @@ import os.path as osp import cv2 import mindspore as ms import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as C +import mindspore.dataset.vision as C from mindspore.mindrecord import FileWriter import numpy as np from numpy import random diff --git a/research/cv/u2net/src/data_loader.py b/research/cv/u2net/src/data_loader.py index 66eb91711aea3067d5c40570c1d678226140bc1d..0f0c8e05ebf5a8b404c96ef6e8e8cfc3e36a739c 100644 --- a/research/cv/u2net/src/data_loader.py +++ b/research/cv/u2net/src/data_loader.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -25,7 +25,7 @@ from skimage import io, transform, color from mindspore import context from mindspore import dataset as ds from mindspore.common import dtype as mstype -import mindspore.dataset.transforms.c_transforms as CC +import mindspore.dataset.transforms as CC from mindspore.context import ParallelMode from mindspore.communication.management import get_rank, get_group_size diff --git a/research/cv/vgg19/src/dataset.py b/research/cv/vgg19/src/dataset.py index 93772b806f5ba6e685f29578bbd16b2b10139e92..d6af839cb262a0bd8b3a47bbcc6d17019af59094 100644 --- a/research/cv/vgg19/src/dataset.py +++ b/research/cv/vgg19/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os from PIL import Image, ImageFile from mindspore.common import dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from src.utils.sampler import DistributedSampler ImageFile.LOAD_TRUNCATED_IMAGES = True diff --git a/research/cv/vit_base/src/dataset.py b/research/cv/vit_base/src/dataset.py index 645c594c556f3284a87f6e6eecc3361babc80dd1..75d969c7f590ba7c8c9e0635b1b578f73319a552 100644 --- a/research/cv/vit_base/src/dataset.py +++ b/research/cv/vit_base/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ import os import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C -import mindspore.dataset.vision.c_transforms as vision +import mindspore.dataset.transforms as C +import mindspore.dataset.vision as vision from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank diff --git a/research/cv/wave_mlp/src/dataset.py b/research/cv/wave_mlp/src/dataset.py index 89c44b54105c8b8a1f3d18ed50c5418f90a3be30..9449268f6e2abc064714bd630de85661850ad67e 100644 --- a/research/cv/wave_mlp/src/dataset.py +++ b/research/cv/wave_mlp/src/dataset.py @@ -17,15 +17,14 @@ import os import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.transforms.c_transforms as C2 -import mindspore.dataset.vision.py_transforms as pytrans -import mindspore.dataset.transforms.py_transforms as py_transforms +import mindspore.dataset.transforms as C2 +import mindspore.dataset.transforms as transforms -from mindspore.dataset.transforms.py_transforms import Compose -import mindspore.dataset.vision.c_transforms as C +from mindspore.dataset.transforms.transforms import Compose +import mindspore.dataset.vision as C -class ToNumpy(py_transforms.PyTensorOperation): +class ToNumpy(transforms.PyTensorOperation): def __init__(self, output_type=np.float32): self.output_type = output_type @@ -81,13 +80,13 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=128): ] else: trans = [ - pytrans.Decode(), - pytrans.Resize(235), - pytrans.CenterCrop(224) + C.Decode(True), + C.Resize(235), + C.CenterCrop(224) ] trans += [ - pytrans.ToTensor(), - pytrans.Normalize(mean=mean, std=std), + C.ToTensor(), + C.Normalize(mean=mean, std=std, is_hwc=False), ] trans = Compose(trans) diff --git a/research/cv/wgan/src/dataset.py b/research/cv/wgan/src/dataset.py index 6168e0752108b79c4a2a4cb2e9764ec410be7741..de2c14e7b27534db5c6c595b420d0e8794874c17 100644 --- a/research/cv/wgan/src/dataset.py +++ b/research/cv/wgan/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,8 +15,8 @@ """ dataset """ import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as c -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as c +import mindspore.dataset.transforms as C2 import mindspore.common.dtype as mstype diff --git a/research/cv/wideresnet/src/dataset.py b/research/cv/wideresnet/src/dataset.py index 2617a656b27d22911fad7a02dcc458b46b42ba87..ea4fcef9fd1a919efaa97bda186dfc3d48ab1cb6 100644 --- a/research/cv/wideresnet/src/dataset.py +++ b/research/cv/wideresnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,8 +19,8 @@ Data operations, will be used in train.py and eval.py import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size diff --git a/research/cv/yolov3_tiny/src/transforms.py b/research/cv/yolov3_tiny/src/transforms.py index 8a483f82269815c2383b45b8b266827d3ac300d6..3417ba8cc8eedefb583c971e52500d0c29201877 100644 --- a/research/cv/yolov3_tiny/src/transforms.py +++ b/research/cv/yolov3_tiny/src/transforms.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -17,7 +17,7 @@ import copy import random import cv2 -import mindspore.dataset.vision.py_transforms as PV +import mindspore.dataset.vision as vision import numpy as np from PIL import Image @@ -566,6 +566,6 @@ class MultiScaleTrans: def __call__(self, img, anno, input_size, mosaic_flag): if mosaic_flag[0] == 0: - img = PV.Decode()(img) + img = vision.Decode(True)(img) img, anno = preprocess_fn(img, anno, self.config, input_size, self.device_num) return img, anno, np.array(img.shape[0:2]) diff --git a/research/cv/yolov3_tiny/src/yolo_dataset.py b/research/cv/yolov3_tiny/src/yolo_dataset.py index 1678f9d7e317692281b91599bbcf9f1b1f10db2d..fd0a25f2825e899beb7a8f0d80e1ae6dfcaf95e2 100644 --- a/research/cv/yolov3_tiny/src/yolo_dataset.py +++ b/research/cv/yolov3_tiny/src/yolo_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -18,7 +18,7 @@ import random import cv2 import mindspore.dataset as de -import mindspore.dataset.vision.c_transforms as CV +import mindspore.dataset.vision as CV import numpy as np from PIL import Image from pycocotools.coco import COCO diff --git a/research/mm/wukong/src/dataset/dataset.py b/research/mm/wukong/src/dataset/dataset.py index 4fef4bd98c6b5dafd6c3d4534ecb0e4544401fd7..a15635b4c9ef4cc4566e1b461797412a2852bc14 100644 --- a/research/mm/wukong/src/dataset/dataset.py +++ b/research/mm/wukong/src/dataset/dataset.py @@ -15,8 +15,8 @@ from mindspore import dtype as mstype import mindspore.dataset as ds from mindspore.dataset.vision import Inter -import mindspore.dataset.vision.c_transforms as C -import mindspore.dataset.transforms.c_transforms as C2 +import mindspore.dataset.vision as C +import mindspore.dataset.transforms as C2 def get_wukong_dataset(dataset_path, columns_list, num_parallel_workers, shuffle, num_shards, shard_id, batch_size): diff --git a/research/nlp/DYR/src/dataset.py b/research/nlp/DYR/src/dataset.py index 9ec0212c73bdbb8263139f7c693ce69c8f5bb41e..3e35e7cd11a45c7cba9365aa472fe037cd1cda0a 100644 --- a/research/nlp/DYR/src/dataset.py +++ b/research/nlp/DYR/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import random import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C # samples in one block POS_SIZE = 1 diff --git a/research/nlp/albert/src/dataset.py b/research/nlp/albert/src/dataset.py index dec0680de3d3ce028d7c290d8766e75e4d5cd087..37549dae2408cb6b0017e0d8625e889486df73d6 100644 --- a/research/nlp/albert/src/dataset.py +++ b/research/nlp/albert/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -20,7 +20,7 @@ import math import numpy as np import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from mindspore import log as logger diff --git a/research/nlp/gpt2/src/dataset.py b/research/nlp/gpt2/src/dataset.py index 7435c52b6350ae291bc5ca87a45a7658609a7856..44984954d313e7300d917347f0b59147fad8a669 100644 --- a/research/nlp/gpt2/src/dataset.py +++ b/research/nlp/gpt2/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2020 Huawei Technologies Co., Ltd +# Copyright 2020-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Data operations""" import mindspore.common.dtype as mstype import mindspore.dataset as de -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C from .finetune_eval_config import gpt2_net_cfg diff --git a/research/nlp/hypertext/src/dataset.py b/research/nlp/hypertext/src/dataset.py index a2513552054309f08fcf6eabcaaca689805ff698..4479d240b4e64d1aa29d5368229f634408987965 100644 --- a/research/nlp/hypertext/src/dataset.py +++ b/research/nlp/hypertext/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -19,7 +19,7 @@ import random from datetime import timedelta import numpy as np import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.common.dtype as mstype MAX_VOCAB_SIZE = 5000000 diff --git a/research/nlp/ktnet/src/dataset.py b/research/nlp/ktnet/src/dataset.py index b2f739e591848d17e0a25b44e07c9bddbaf8d8cc..66ee897730e00f032dfe3e22306d0f1cb4a4a3b2 100644 --- a/research/nlp/ktnet/src/dataset.py +++ b/research/nlp/ktnet/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -16,7 +16,7 @@ import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def create_train_dataset(data_file=None, do_shuffle=True, device_num=1, rank=0, batch_size=1, diff --git a/research/nlp/luke/src/reading_comprehension/dataLoader.py b/research/nlp/luke/src/reading_comprehension/dataLoader.py index 95494be5581f83ba526772521031dc3257bcde50..73a3fc3456559c3e429759558fc25e60e7617b9d 100644 --- a/research/nlp/luke/src/reading_comprehension/dataLoader.py +++ b/research/nlp/luke/src/reading_comprehension/dataLoader.py @@ -32,7 +32,7 @@ def create_dataset(data_file=None, do_shuffle=True, device_num=1, rank=0, batch_ "start_positions", "end_positions"], shuffle=do_shuffle, num_shards=device_num, shard_id=rank, num_samples=num, num_parallel_workers=num_parallel_workers) - type_int32 = C.c_transforms.TypeCast(mstype.int32) + type_int32 = C.TypeCast(mstype.int32) dataset = dataset.map(operations=type_int32, input_columns="word_ids") dataset = dataset.map(operations=type_int32, input_columns="word_segment_ids") dataset = dataset.map(operations=type_int32, input_columns="word_attention_mask") @@ -57,7 +57,7 @@ def create_eval_dataset(data_file=None, do_shuffle=True, device_num=1, rank=0, b "example_indices"], shuffle=do_shuffle, num_shards=device_num, shard_id=rank, num_samples=num, num_parallel_workers=num_parallel_workers) - type_int32 = C.c_transforms.TypeCast(mstype.int32) + type_int32 = C.TypeCast(mstype.int32) dataset = dataset.map(operations=type_int32, input_columns="word_ids") dataset = dataset.map(operations=type_int32, input_columns="word_segment_ids") dataset = dataset.map(operations=type_int32, input_columns="word_attention_mask") diff --git a/research/nlp/seq2seq/src/dataset/load_dataset.py b/research/nlp/seq2seq/src/dataset/load_dataset.py index 5843e0a31c16d43d829c9b00909462740f03dcc6..5ada4bd0b33d354fb8c284545fb39c1f2baa68d6 100644 --- a/research/nlp/seq2seq/src/dataset/load_dataset.py +++ b/research/nlp/seq2seq/src/dataset/load_dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,7 +15,7 @@ """Dataset loader to feed into model.""" import mindspore.common.dtype as mstype import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as deC +import mindspore.dataset.transforms as deC def _load_dataset(input_files, batch_size, sink_mode=False, diff --git a/research/recommend/mmoe/src/load_dataset.py b/research/recommend/mmoe/src/load_dataset.py index 602a26d726788630bb207dfd5387edbba7b7b7d3..650df81c19570d51061ade82d6155a991e1200de 100644 --- a/research/recommend/mmoe/src/load_dataset.py +++ b/research/recommend/mmoe/src/load_dataset.py @@ -16,7 +16,7 @@ import os import mindspore.dataset as de from mindspore.communication.management import get_rank, get_group_size -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C import mindspore.common.dtype as mstype diff --git a/utils/model_scaffolding/example/src/dataset.py b/utils/model_scaffolding/example/src/dataset.py index f659d158a26a3ec7f53e170f74cf6f26a907e11e..83d20a7be2dbb2a86fd4a855c98ae07f4c86c1ef 100644 --- a/utils/model_scaffolding/example/src/dataset.py +++ b/utils/model_scaffolding/example/src/dataset.py @@ -1,4 +1,4 @@ -# Copyright 2021 Huawei Technologies Co., Ltd +# Copyright 2021-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -15,8 +15,8 @@ """Dataset""" import mindspore.dataset as ds -import mindspore.dataset.vision.c_transforms as CV -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.vision as CV +import mindspore.dataset.transforms as C from mindspore.dataset.vision import Inter from mindspore.common import dtype as mstype