diff --git a/research/cv/FaceAttribute/preprocess.py b/research/cv/FaceAttribute/preprocess.py index 1a2ebb578c428d96af0c619d1043f3d14913ec5a..70e2264271fc4b907a84823ae6f60db722d1ad89 100644 --- a/research/cv/FaceAttribute/preprocess.py +++ b/research/cv/FaceAttribute/preprocess.py @@ -28,7 +28,7 @@ def eval_data_generator(args): dst_h = args.dst_h batch_size = 1 #attri_num = args.attri_num - transform_img = F2.Compose([F.Decode(True)), + transform_img = F2.Compose([F.Decode(True), F.Resize((dst_w, dst_h)), F.ToTensor(), F.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), is_hwc=False)]) diff --git a/research/cv/FaceAttribute/src/dataset_train.py b/research/cv/FaceAttribute/src/dataset_train.py index 79617bdb77873b106e46b836eab5957e4f645273..80d2cc2979d8c6a8722f99c9c59d325ffecc344e 100644 --- a/research/cv/FaceAttribute/src/dataset_train.py +++ b/research/cv/FaceAttribute/src/dataset_train.py @@ -28,7 +28,7 @@ def data_generator(args): batch_size = args.per_batch_size attri_num = args.attri_num max_epoch = args.max_epoch - transform_img = F2.Compose([F.Decode(True)), + transform_img = F2.Compose([F.Decode(True), F.Resize((dst_w, dst_h)), F.RandomHorizontalFlip(prob=0.5), F.ToTensor(), diff --git a/research/cv/HRNetW48_cls/src/dataset.py b/research/cv/HRNetW48_cls/src/dataset.py index 3a73f1c52d6c68a123bee8db35775e0e608aac33..27815348991545a31c7d7898bb253e62d3ab9e15 100644 --- a/research/cv/HRNetW48_cls/src/dataset.py +++ b/research/cv/HRNetW48_cls/src/dataset.py @@ -19,8 +19,8 @@ from mindspore import dataset as ds from mindspore.common import dtype as mstype from mindspore.communication.management import get_group_size from mindspore.communication.management import get_rank -from mindspore.dataset.transforms import c_transforms as C2 -from mindspore.dataset.vision import c_transforms as C +import mindspore.dataset.transforms as C2 +import mindspore.dataset.vision as C def create_imagenet(