diff --git a/research/cv/DnCNN/infer/data/preprocess/export_bin_file.py b/research/cv/DnCNN/infer/data/preprocess/export_bin_file.py index b4b5462ec9637e9fcf5840cd4d4aa78597df2f3e..14c0cb59612d02afe5b1a5a1f55aa8dfa82cd8e3 100644 --- a/research/cv/DnCNN/infer/data/preprocess/export_bin_file.py +++ b/research/cv/DnCNN/infer/data/preprocess/export_bin_file.py @@ -23,7 +23,7 @@ import numpy as np import cv2 import mindspore import mindspore.dataset as ds -import mindspore.dataset.transforms.c_transforms as C +import mindspore.dataset.transforms as C def ResziePadding(img, fixed_side=256): diff --git a/research/cv/FaceDetection/src/data_preprocess.py b/research/cv/FaceDetection/src/data_preprocess.py index 8c1e7ebaae726b0fce08dfebe12add3fd95420a2..40081559b9bf3d760af2d6da2547708b62f405a5 100644 --- a/research/cv/FaceDetection/src/data_preprocess.py +++ b/research/cv/FaceDetection/src/data_preprocess.py @@ -31,7 +31,7 @@ class SingleScaleTrans: def __call__(self, imgs, ann, image_names, image_size, batch_info): size = self.resize - decode = P.Decode(True) + decode = V.Decode(True) resize_letter_box_op = ResizeLetterbox(input_dim=size) to_tensor = V.ToTensor() @@ -204,11 +204,11 @@ def preprocess_fn(image, annotation): anchors = config.anchors anchors_mask = config.anchors_mask - decode = P.Decode(True) + decode = V.Decode(True) random_crop_letter_box_op = RandomCropLetterbox(jitter=jitter, input_dim=size) random_flip_op = RandomFlip(flip) hsv_shift_op = HSVShift(hue, sat, val) - to_tensor = P.ToTensor() + to_tensor = V.ToTensor() img_pil = decode(image) input_data = img_pil, annotation