# semtools **Repository Path**: mirrors/semtools ## Basic Information - **Project Name**: semtools - **Description**: 一套高性能的 CLI 工具,用于文档处理和语义搜索,使用 Rust 构建,速度快、可靠性高 - **Primary Language**: Python - **License**: MIT - **Default Branch**: main - **Homepage**: https://www.oschina.net/p/semtools - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-12-03 - **Last Updated**: 2025-12-06 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # SemTools > Semantic search and document parsing tools for the command line A collection of high-performance CLI tools for document processing and semantic search, built with Rust for speed and reliability. - **`parse`** - Parse documents (PDF, DOCX, etc.) using, by default, the LlamaParse API into markdown format - **`search`** - Local semantic keyword search using multilingual embeddings with cosine similarity matching and per-line context matching - **`ask`** - AI agent with search and read tools for answering questions over document collections (defaults to OpenAI, but see the [config section](#configuration) to learn more about connecting to any OpenAI-Compatible API) - **`workspace`** - Workspace management for accelerating search over large collections **NOTE:** By default, `parse` uses LlamaParse as a backend. Get your API key today for free at [https://cloud.llamaindex.ai](https://cloud.llamaindex.ai). `search` and `workspace` remain local-only. `ask` requires an OpenAI API key. ## Key Features - **Fast semantic search** using model2vec embeddings from [minishlab/potion-multilingual-128M](https://huggingface.co/minishlab/potion-multilingual-128M) - **Reliable document parsing** with caching and error handling - **Unix-friendly** design with proper stdin/stdout handling - **Configurable** distance thresholds and returned chunk sizes - **Multi-format support** for parsing documents (PDF, DOCX, PPTX, etc.) - **Concurrent processing** for better parsing performance - **Workspace management** for efficient document retrieval over large collections ## Installation Prerequisites: - For the `parse` tool: LlamaIndex Cloud API key Install: You can install `semtools` via npm: ```bash npm i -g @llamaindex/semtools ``` Or via cargo: ```bash # install entire crate cargo install semtools # install only select features cargo install semtools --no-default-features --features=parse ``` Note: Installing from npm builds the Rust binaries locally during install if a prebuilt binary is not available, which requires Rust and Cargo to be available in your environment. Install from `rustup` if needed: `https://www.rust-lang.org/tools/install`. ## Quick Start Basic Usage: ```bash # Parse some files parse my_dir/*.pdf # Search some (text-based) files search "some keywords" *.txt --max-distance 0.3 --n-lines 5 # Ask questions about your documents using an AI agent ask "What are the main findings?" papers/*.txt # Combine parsing and search parse my_docs/*.pdf | xargs search "API endpoints" # Ask a question to a set of files ask "Some question?" *.txt # Combine parsing with the ask agent parse research_papers/*.pdf | xargs ask "Summarize the key methodologies" # Ask based on stdin content cat README.md | ask "How do I install SemTools?" ``` Advanced Usage: ```bash # Combine with grep for exact-match pre-filtering and distance thresholding parse *.pdf | xargs cat | grep -i "error" | search "network error" --max-distance 0.3 # Pipeline with content search (note the 'xargs' on search to search files instead of stdin) find . -name "*.md" | xargs parse | xargs search "installation" # Combine with grep for filtering (grep could be before or after parse/search!) parse docs/*.pdf | xargs search "API" | grep -A5 "authentication" # Save search results from stdin search parse report.pdf | xargs cat | search "summary" > results.txt ``` Using Workspaces: ```bash # Create or select a workspace # Workspaces are stored in ~/.semtools/workspaces/ workspace use my-workspace > Workspace 'my-workspace' configured. > To activate it, run: > export SEMTOOLS_WORKSPACE=my-workspace > > Or add this to your shell profile (.bashrc, .zshrc, etc.) # Activate the workspace export SEMTOOLS_WORKSPACE=my-workspace # All search commands will now use the workspace for caching embeddings # The initial command is used to initialize the workspace search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10 # If documents change, they are automatically re-embedded and cached echo "some new content" > ./some_large_dir/some_file.txt search "some keywords" ./some_large_dir/*.txt --n-lines 5 --top-k 10 # If documents are removed, you can run prune to clean up stale files workspace prune # You can see the stats of a workspace at any time workspace status > Active workspace: arxiv > Root: /Users/loganmarkewich/.semtools/workspaces/arxiv > Documents: 3000 > Index: Yes (IVF_PQ) ``` ## CLI Help ```bash $ parse --help A CLI tool for parsing documents using various backends Usage: parse [OPTIONS] ... Arguments: ... Files to parse Options: -c, --config Path to the config file. Defaults to ~/.semtools_config.json -b, --backend The backend type to use for parsing. Defaults to `llama-parse` [default: llama-parse] -v, --verbose Verbose output while parsing -h, --help Print help -V, --version Print version ``` ```bash $ search --help A CLI tool for fast semantic keyword search Usage: search [OPTIONS] [FILES]... Arguments: Query to search for (positional argument) [FILES]... Files or directories to search Options: -n, --n-lines How many lines before/after to return as context [default: 3] --top-k The top-k files or texts to return (ignored if max_distance is set) [default: 3] -m, --max-distance Return all results with distance below this threshold (0.0+) -i, --ignore-case Perform case-insensitive search (default is false) -h, --help Print help -V, --version Print version ``` ```bash $ workspace --help Manage semtools workspaces Usage: workspace Commands: use Use or create a workspace (prints export command to run) status Show active workspace and basic stats prune Remove stale or missing files from store help Print this message or the help of the given subcommand(s) Options: -h, --help Print help -V, --version Print version ``` ```bash $ ask --help A CLI tool for fast semantic keyword search Usage: ask [OPTIONS] [FILES]... Arguments: Query to prompt the agent with [FILES]... Files to search, optional if using stdin Options: -c, --config Path to the config file. Defaults to ~/.semtools_config.json --api-key OpenAI API key (overrides config file and env var) --base-url OpenAI base URL (overrides config file) -m, --model Model to use for the agent (overrides config file) -h, --help Print help -V, --version Print version ``` ## Configuration SemTools uses a unified configuration file at `~/.semtools_config.json` that contains settings for all CLI tools. You can also specify a custom config file path using the `-c` or `--config` flag on any command. ### Unified Configuration File Create a `~/.semtools_config.json` file with settings for the tools you use. All sections are optional - if not specified, sensible defaults will be used. ```json { "parse": { "api_key": "your_llama_cloud_api_key_here", "num_ongoing_requests": 10, "base_url": "https://api.cloud.llamaindex.ai", "parse_kwargs": { "parse_mode": "parse_page_with_agent", "model": "openai-gpt-4-1-mini", "high_res_ocr": "true", "adaptive_long_table": "true", "outlined_table_extraction": "true", "output_tables_as_HTML": "true" }, "check_interval": 5, "max_timeout": 3600, "max_retries": 10, "retry_delay_ms": 1000, "backoff_multiplier": 2.0 }, "ask": { "api_key": "your_openai_api_key_here", "base_url": null, "model": "gpt-4o-mini", "max_iterations": 20, "api_mode": "responses", // Can be responses or chat } } ``` See `example_semtools_config.json` in the repository for a complete example. ### Environment Variables As an alternative or supplement to the config file, you can set API keys via environment variables: ```bash # For parse tool export LLAMA_CLOUD_API_KEY="your_llama_cloud_api_key_here" # For ask tool export OPENAI_API_KEY="your_openai_api_key_here" ``` ### Configuration Priority Configuration values are resolved in the following priority order (highest to lowest): 1. **CLI arguments** (e.g., `--api-key`, `--model`, `--base-url`) 2. **Config file** (`~/.semtools_config.json` or custom path via `-c`) 3. **Environment variables** (`LLAMA_CLOUD_API_KEY`, `OPENAI_API_KEY`) 4. **Built-in defaults** This allows you to set common defaults in the config file while overriding them on a per-command basis when needed. ### Tool-Specific Configuration #### Parse Tool The `parse` tool requires a LlamaParse API key. Get your free API key at [https://cloud.llamaindex.ai](https://cloud.llamaindex.ai). Configuration options: - `api_key`: Your LlamaParse API key - `base_url`: API endpoint (default: "https://api.cloud.llamaindex.ai") - `num_ongoing_requests`: Number of concurrent requests (default: 10) - `parse_kwargs`: Additional parsing parameters - `check_interval`, `max_timeout`, `max_retries`, `retry_delay_ms`, `backoff_multiplier`: Retry and timeout settings #### Ask Tool The `ask` tool requires an OpenAI API key for the agent's LLM. Configuration options: - `api_key`: Your OpenAI API key - `base_url`: Custom OpenAI-compatible API endpoint (optional, for using other providers) - `model`: LLM model to use (default: "gpt-4o-mini") - `max_iterations`: Maximum agent loop iterations (default: 10) You can also override these per-command: ```bash ask "What is this about?" docs/*.txt --model gpt-4o --api-key sk-... ``` ## Agent Use Case Examples - [Using Semtools with Coding Agents](examples/use_with_coding_agents.md) - [Using Semtools with MCP](examples/use_with_mcp.md) ## Future Work - [ ] More parsing backends (something local-only would be great!) - [ ] Improved search algorithms - [x] Built-in agentic search - [x] Persistence for speedups on repeat searches on the same files ## Contributing We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines. ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Acknowledgments - [LlamaIndex/LlamaParse](https://cloud.llamaindex.ai/) for document parsing capabilities - [model2vec-rs](https://github.com/MinishLab/model2vec-rs)for fast embedding generation - [minishlab/potion-multilingual-128M](https://huggingface.co/minishlab/potion-multilingual-128M) for an amazing default static embedding model - [simsimd](https://github.com/ashvardanian/simsimd) for efficient similarity computation