# xgboost **Repository Path**: mirrors/xgboost ## Basic Information - **Project Name**: xgboost - **Description**: XGBoost是"极端梯度提升"(eXtreme Gradient Boosting)的简称 - **Primary Language**: C - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 16 - **Forks**: 2 - **Created**: 2017-06-05 - **Last Updated**: 2025-08-09 ## Categories & Tags **Categories**: mathlibs **Tags**: None ## README eXtreme Gradient Boosting =========== [![Build Status](https://badge.buildkite.com/aca47f40a32735c00a8550540c5eeff6a4c1d246a580cae9b0.svg?branch=master)](https://buildkite.com/xgboost/xgboost-ci) [![XGBoost-CI](https://github.com/dmlc/xgboost/workflows/XGBoost%20CI/badge.svg?branch=master)](https://github.com/dmlc/xgboost/actions) [![Documentation Status](https://readthedocs.org/projects/xgboost/badge/?version=latest)](https://xgboost.readthedocs.org) [![GitHub license](https://dmlc.github.io/img/apache2.svg)](./LICENSE) [![CRAN Status Badge](https://www.r-pkg.org/badges/version/xgboost)](https://cran.r-project.org/web/packages/xgboost) [![PyPI version](https://badge.fury.io/py/xgboost.svg)](https://pypi.python.org/pypi/xgboost/) [![Conda version](https://img.shields.io/conda/vn/conda-forge/py-xgboost.svg)](https://anaconda.org/conda-forge/py-xgboost) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org) [![Twitter](https://img.shields.io/badge/@XGBoostProject--_.svg?style=social&logo=twitter)](https://twitter.com/XGBoostProject) [![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/dmlc/xgboost/badge)](https://api.securityscorecards.dev/projects/github.com/dmlc/xgboost) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/comet-examples/blob/master/integrations/model-training/xgboost/notebooks/how_to_use_comet_with_xgboost_tutorial.ipynb) [Community](https://xgboost.ai/community) | [Documentation](https://xgboost.readthedocs.org) | [Resources](demo/README.md) | [Contributors](CONTRIBUTORS.md) | [Release Notes](https://xgboost.readthedocs.io/en/latest/changes/index.html) XGBoost is an optimized distributed gradient boosting library designed to be highly ***efficient***, ***flexible*** and ***portable***. It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, Dask, Spark, PySpark) and can solve problems beyond billions of examples. License ------- © Contributors, 2021. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license. Contribute to XGBoost --------------------- XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the [Community Page](https://xgboost.ai/community). Reference --------- - Tianqi Chen and Carlos Guestrin. [XGBoost: A Scalable Tree Boosting System](https://arxiv.org/abs/1603.02754). In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016 - XGBoost originates from research project at University of Washington. Sponsors -------- Become a sponsor and get a logo here. See details at [Sponsoring the XGBoost Project](https://xgboost.ai/sponsors). The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net). ## Open Source Collective sponsors [![Backers on Open Collective](https://opencollective.com/xgboost/backers/badge.svg)](#backers) [![Sponsors on Open Collective](https://opencollective.com/xgboost/sponsors/badge.svg)](#sponsors) ### Sponsors [[Become a sponsor](https://opencollective.com/xgboost#sponsor)] NVIDIA ### Backers [[Become a backer](https://opencollective.com/xgboost#backer)]