# cloudml-hypertune **Repository Path**: mirrors_GoogleCloudPlatform/cloudml-hypertune ## Basic Information - **Project Name**: cloudml-hypertune - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-08 - **Last Updated**: 2026-02-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README Metric Reporting Python Package for CloudML Hypertune ===================================================== Helper Functions for CloudML Engine Hypertune Services. .. _Google CloudML Engine Hyperparameter Tuning Service: https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview |pypi| |versions| Prerequisites ------------- - Google CloudML Engine `Overview `__. - Google CloudML Engine `Hyperparameter Tuning Overview `__. Installation ------------ Install via `pip `__: :: pip install cloudml-hypertune Usage ----- .. code:: python import hypertune hpt = hypertune.HyperTune() hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag='my_metric_tag', metric_value=0.987, global_step=1000) By default, the metric entries will be stored to ``/tmp/hypertune/output.metrics`` in json format: :: {"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"} Licensing --------- - Apache 2.0 .. |pypi| image:: https://img.shields.io/pypi/v/cloudml-hypertune.svg :target: https://pypi.org/project/cloudml-hypertune/ .. |versions| image:: https://img.shields.io/pypi/pyversions/cloudml-hypertune.svg :target: https://pypi.org/project/cloudml-hypertune/