# cloudml-hypertune
**Repository Path**: mirrors_GoogleCloudPlatform/cloudml-hypertune
## Basic Information
- **Project Name**: cloudml-hypertune
- **Description**: No description available
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-08-08
- **Last Updated**: 2026-02-21
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
Metric Reporting Python Package for CloudML Hypertune
=====================================================
Helper Functions for CloudML Engine Hypertune Services.
.. _Google CloudML Engine Hyperparameter Tuning Service: https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview
|pypi| |versions|
Prerequisites
-------------
- Google CloudML Engine `Overview `__.
- Google CloudML Engine `Hyperparameter Tuning
Overview `__.
Installation
------------
Install via `pip `__:
::
pip install cloudml-hypertune
Usage
-----
.. code:: python
import hypertune
hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='my_metric_tag',
metric_value=0.987,
global_step=1000)
By default, the metric entries will be stored to ``/tmp/hypertune/output.metrics`` in json format:
::
{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}
Licensing
---------
- Apache 2.0
.. |pypi| image:: https://img.shields.io/pypi/v/cloudml-hypertune.svg
:target: https://pypi.org/project/cloudml-hypertune/
.. |versions| image:: https://img.shields.io/pypi/pyversions/cloudml-hypertune.svg
:target: https://pypi.org/project/cloudml-hypertune/