# ploomber **Repository Path**: mirrors_andyglick/ploomber ## Basic Information - **Project Name**: ploomber - **Description**: The fastest ⚡️ way to build data pipelines. Develop iteratively, deploy anywhere. ☁️ - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-03-28 - **Last Updated**: 2026-02-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README
Join our community | Newsletter | Contact us | Docs | Blog | Website | YouTube
Ploomber is the fastest way to build data pipelines ⚡️. Use your favorite editor (**[Jupyter](https://docs.ploomber.io/en/latest/user-guide/jupyter.html), [VSCode](https://docs.ploomber.io/en/latest/user-guide/editors.html), [PyCharm](https://docs.ploomber.io/en/latest/user-guide/editors.html)**) to develop interactively and deploy ☁️ without code changes (**[Kubernetes](https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html), [Airflow](https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html), [AWS Batch](https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html), and [SLURM](https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html)**). Do you have legacy notebooks? Refactor them into modular pipelines with a single command. ## Installation *Compatible with Python 3.6 and higher.* Install with `pip`: ```sh pip install ploomber ``` Or with `conda`: ```sh conda install ploomber -c conda-forge ``` ## Getting started **Open a hosted JupyterLab instance:** [](https://mybinder.org/v2/gh/ploomber/binder-env/main?urlpath=git-pull%3Frepo%3Dhttps%253A%252F%252Fgithub.com%252Fploomber%252Fprojects%26urlpath%3Dlab%252Ftree%252Fprojects%252Fguides/first-pipeline%252FREADME.ipynb%26branch%3Dmaster) **Run an example locally:** ```sh # ML pipeline example ploomber examples -n templates/ml-basic -o ml-basic cd ml-basic # install dependencies pip install -r requirements.txt # run pipeline ploomber build ``` You just ran a Ploomber pipeline! 🎉 Check out the `output/nb.html` report with model results! The `pipeline.yaml` contains the pipeline declaration. Feel free to modify any of the tasks, then call `ploomber build` again to update the results (Note: if using VSCode or PyCharm, execute `ploomber nb -i` before editing the files). **What's next?** Ready to **migrate your project?** [Click here.](https://docs.ploomber.io/en/latest/user-guide/refactoring.html) Do you want to **learn more?** [Check out the introductory tutorial.](https://docs.ploomber.io/en/latest/get-started/first-pipeline.html) Run more [examples.](https://docs.ploomber.io/en/latest/user-guide/templates.html) ## Community * [Join us on Slack](https://ploomber.io/community) * [Newsletter](https://www.getrevue.co/profile/ploomber) * [YouTube](https://www.youtube.com/channel/UCaIS5BMlmeNQE4-Gn0xTDXQ) * [Contact the development team](mailto:contact@ploomber.io) ## Main Features ### ⚡️ Get started quickly A simple YAML API to get started quickly, a powerful Python API for total flexibility. https://user-images.githubusercontent.com/989250/150660813-fc289c6c-0ed5-432d-b6df-063ce98c0093.mp4 ### ⏱ Shorter development cycles Automatically cache your pipeline’s previous results and only re-compute tasks that have changed since your last execution. https://user-images.githubusercontent.com/989250/150660820-9a3a0abd-5904-492b-97ff-5494285dfebf.mp4 ### ☁️ Deploy anywhere Run as a shell script in a single machine or distributively in [Kubernetes](https://soopervisor.readthedocs.io/en/latest/tutorials/kubernetes.html), [Airflow](https://soopervisor.readthedocs.io/en/latest/tutorials/airflow.html), [AWS Batch](https://soopervisor.readthedocs.io/en/latest/tutorials/aws-batch.html), or [SLURM](https://soopervisor.readthedocs.io/en/latest/tutorials/slurm.html). https://user-images.githubusercontent.com/989250/150660830-3f81c9a2-5392-49e5-976d-cb8a38441ecb.mp4 ### 📙 Automated migration from legacy notebooks Bring your old monolithic notebooks, and we’ll automatically convert them into maintainable, modular pipelines. https://user-images.githubusercontent.com/989250/150660840-b0c12f85-504c-4233-8c3d-6724d291f1aa.mp4 [I want to migrate my notebook.](https://docs.ploomber.io/en/latest/user-guide/refactoring.html) [Show me a demo.](https://www.youtube.com/watch?v=EJecqsZBr3Q) ## Resources * [Documentation](https://docs.ploomber.io/) * [PyData Chicago talk (covers motivation and demo)](https://youtu.be/qUL7QabcKcw) * [Develop and deploy an ML pipeline in 30 minutes (EuroPython 2021)](https://youtu.be/O8tqiCkIWPs) * [Guest blog post on the official Jupyter blog](https://blog.jupyter.org/ploomber-maintainable-and-collaborative-pipelines-in-jupyter-acb3ad2101a7) * [Examples (Machine Learning pipeline, ETL, among others)](https://github.com/ploomber/projects) * [Blog](https://ploomber.io/) * [Comparison with other tools](https://ploomber.io/posts/survey) * [More videos](https://docs.ploomber.io/en/latest/videos.html)