# mahout
**Repository Path**: mirrors_apache/mahout
## Basic Information
- **Project Name**: mahout
- **Description**: Mirror of Apache Mahout
- **Primary Language**: Unknown
- **License**: Apache-2.0
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-08-22
- **Last Updated**: 2026-01-31
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# Apache Mahout
[](https://www.apache.org/licenses/LICENSE-2.0)
[](https://www.python.org/)
[](https://github.com/apache/mahout/stargazers)
[](https://github.com/apache/mahout/graphs/contributors)
The goal of the Apache Mahoutâ„¢ project is to build an environment for quickly creating scalable, performant machine learning applications.\
For additional information about Mahout, visit the [Mahout Home Page](http://mahout.apache.org/)
## Qumat
Qumat is a high-level Python library for quantum computing that provides:
- **Quantum Circuit Abstraction** - Build quantum circuits with standard gates (Hadamard, CNOT, Pauli, etc.) and run them on Qiskit, Cirq, or Amazon Braket with a single unified API. Write once, execute anywhere. Check out [basic gates](docs/basic-gates.md) for a quick introduction to the basic gates supported across all backends.
- **QDP (Quantum Data Plane)** - Encode classical data into quantum states using GPU-accelerated kernels. Zero-copy tensor transfer via DLPack lets you move data between PyTorch, NumPy, and TensorFlow without overhead.
## Quick Start
```bash
git clone https://github.com/apache/mahout.git
cd mahout
pip install uv
uv sync # Core Qumat
uv sync --extra qdp # With QDP (requires CUDA GPU)
```
### Qumat: Run a Quantum Circuit
```python
from qumat import QuMat
qumat = QuMat({"backend_name": "qiskit", "backend_options": {"simulator_type": "aer_simulator"}})
qumat.create_empty_circuit(num_qubits=2)
qumat.apply_hadamard_gate(0)
qumat.apply_cnot_gate(0, 1)
qumat.execute_circuit()
```
### QDP: Encode data for Quantum ML
```python
import qumat.qdp as qdp
engine = qdp.QdpEngine(device_id=0)
qtensor = engine.encode([1.0, 2.0, 3.0, 4.0], num_qubits=2, encoding_method="amplitude")
```
## Roadmap
### 2024
- [x] Transition of Classic to maintenance mode
- [x] Integration of Qumat with hardened (tests, docs, CI/CD) Cirq, Qiskit, and Braket backends
- [x] Integration with Amazon Braket
- [x] [Public talk about Qumat](https://2024.fossy.us/schedule/presentation/265/)
### 2025
- [x] [FOSDEM talk](https://fosdem.org/2025/schedule/event/fosdem-2025-5298-introducing-qumat-an-apache-mahout-joint-/)
- [x] QDP: Foundation & Infrastructure (Rust workspace, build configuration)
- [x] QDP: Core Implementation (CUDA kernels, CPU preprocessing, GPU memory management)
- [x] QDP: Zero-copy and Safety (DLManagedTensor, DLPack structures)
- [x] QDP: Python Binding (PyO3 wrapping, DLPack protocol)
### Q1 2026
- [ ] QDP: Input Format Support (PyTorch, NumPy, TensorFlow integration)
- [ ] QDP: Verification and Testing (device testing, benchmarking)
- [ ] QDP: Additional Encoders (angle/basis encoding, multi-GPU optimization)
- [ ] QDP: Integration & Release (documentation, example notebooks, PyPI publishing)
## Legal
Please see the `NOTICE.txt` included in this directory for more information.