# test-framework **Repository Path**: mirrors_dcloudio/test-framework ## Basic Information - **Project Name**: test-framework - **Description**: 框架测试汇总 - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-08-08 - **Last Updated**: 2025-08-16 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README 这是为《小程序跨端框架全面测评》准备的仓库。 本项目分别使用微信原生版、wepy版、mpvue版、taro版、uni-app版、chalemeon版,各自开发一个仿微博小程序首页的复杂长列表,支持下拉刷新、上拉翻页、点赞功能。 该项目主要用于两项测试: - 跨端支持度如何:是否真能实现各框架宣传的那样,一次开发、多端发布?真的不需要二次开发? - 跨端框架性能如何:跨端框架基本都是`compiler` + `runtime`模式,引入的`runtime`是否会降低运行性能?尤其是与原生微信小程序开发相比性能怎么样? 大家可自助测试,启动测试请修改 `utils` --> `config.js` 下各项配置: - `PERF_MAX` 总翻页次数 - `PERF_LIKE_MAX` 总点赞次数 - `PERF_AUTO` 是否开启自动测试 - `PERF_USING_COMPONENTS` 是否为原生组件,`mpvue`、`wepy` 为 `false`, 其他均为 `true`,请勿手动修改 Tips: - `kone` 修改的配置跟其他平台有些区别,项目编译之后到微信开发者工具找到 `common --> utils --> perf.common.js` 文件,修改文件 `97行` 的 `PERF_MAX` 等变量,与上述描述一致,开始自动测试。 - 因为 `kone` 翻页到 33 页会导致节点超出,脚本无法继续进行,为了方便查看日志,在 `common --> utils --> perf.common.js` 文件搜索 `showToast`, 大概 187 行,注释掉 `showToast` 弹窗提示的实现 ,并在手机端开启调试模式,查看报错日志。 ## 测试结果@20200409 参考:[跨端开发框架深度横评之2020版](https://juejin.im/post/6844904118901817351) ## 测试结果@20190327 ### 1. 跨端支持度如何 开发一次,到处运行,是每个程序员的梦想。但现实往往变成开发一次,到处调错。 各个待评测框架,是否真得如宣传的那样,一次开发、多端发布? 我们将上述[仿微博App](https://github.com/dcloudio/test-framework)依次发布到各平台,验证每个框架在各端的兼容性,结果如下: |平台 | 微信原生 |wepy |mpvue |taro |uni-app|chameleon | |:- |:- |:- |:- |:- |:- |:- | |微信小程序 |⭕️ |⭕️ |⭕️ |⭕️ |⭕️ |⭕️ | |支付宝小程序 |❌ |❌ |⭕️ |⭕️ |⭕️ |❌ | |百度小程序 |❌ |❌ |⭕️ |⭕️ |⭕️ |❌ | |头条小程序 |❌ |❌ |⭕️ |⭕️ |⭕️ |❌ | |H5端 |❌ |❌ |❌ |上拉加载/下拉刷新失效 |⭕️ |上拉加载/下拉刷新失效 | |App端 |❌ |❌ |❌ |上拉加载失效 |⭕️ |列表无法滚动,无法测试上拉加载/下拉刷新| *测试结果说明:* - ⭕ 表示支持且功能正常,❌ 表示不支持,其它则表示支持但存在部分bug或兼容问题 - `wepy` 2.0 宣称版已支持其他家小程序,本测试基于`wepy`官网指引安装的`wepy-cli`默认版本为1.7.3,尚不支持多端 - `chameleon`尝鲜版宣称支付宝、百度小程序,本测试基于`chameleon`官网指引安装的`chameleon-tool`默认版本为0.1.1,尚不支持其它小程序 通过这个简单的例子可以看出,跨端支持度测评结论:`uni-app` > `taro` > `chameleon` > `mpvue` >`wepy`、`原生微信小程序` 但是仅有上面的测试还不全面,实际业务要比这个测试例复杂很多。但我们没法开发很多复杂业务做评测,所以还需要再对照各家文档补充一些信息。 由于每个框架的文档中都描述了各种组件和API的跨端支持程度。我们过了几家的文档,发现各家基本是以微信小程序为基线,然后把各种组件和API在其他端实现了一遍: - `taro`:H5端实现了大部分微信的API,App端和微信的差异比较大。 - `uni-app`:组件、API、配置,大部分在各个端均已实现,个别API有说明在某些端不支持。可以看出uni-app是完整在H5端实现了一套微信模拟器,在App端实现了一套微信小程序引擎,才达到比较完善的平台兼容性。 - `chameleon`:非常常用的一些组件和API在各端已经实现,这部分的平台差异较少。但大量组件和API需要开发者自己分平台写代码。 跨端框架,一方面要考虑框架提供的通用api跨端支持,同时还要考虑不同端的特色差异如何兼容。毕竟每个端都会有自己的特色,不可能完全一致。 - `taro`:提供了js环境变量判断和统一接口的多端文件,可以在组件、js、文件方面扩展多端,不支持其他环节的分平台处理。 - `uni-app`:提供了条件编译模型,所有代码包括组件、js、css、配置json、文件、目录,均支持条件编译,可不受限的编写各端差异代码。 - `chameleon`:提供了多态方案,可以在组件、js、文件方面扩展多端,不支持其他方式的分平台处理。 跨端框架,还涉及一个ui框架的跨端问题,评测结果如下: - `taro`:官方提供了`taro ui`,支持小程序(微信/支付宝/百度)、H5平台,不支持App,[详见](https://taro-ui.aotu.io/#/) - `uni-app`:官方提供了`uni ui`,可全端运行;uni-app还有一个插件市场,里面有很多三方ui组件,[详见](https://ext.dcloud.net.cn/) - `chameleon`:官方提供了`cml-ui`扩展组件库,可全端运行,但组件数量略少,[详见](https://cmljs.org/doc/component/expand/expand.html) 最后补充跨端案例: - mpvue:微信端案例丰富,未见其它端案例 - taro:微信端案例丰富,百度、支付宝、H5端亦有少量案例 - uni-app:微信、App、H5三端案例丰富,官方示例已发布到6端 - chameleon:未看到任何端案例 综合以上信息,本项的最终评测结论:`uni-app` > `taro` > `chameleon` > `mpvue` > `wepy`、`原生微信小程序` 之前曾有友商掀起一番真跨端和伪跨端之争,通过本次Demo实测,这个争论可以盖棺定论了。 ### 2. 跨端框架性能如何 跨端框架基本都是`compiler` + `runtime`模式,引入的`runtime`是否会降低运行性能? 尤其是与原生微信小程序开发相比性能怎么样,这是大家普遍关心的问题。 我们依然以上述仿微博小程序为例,测试2个容易出性能问题的点:长列表加载、大量点赞组件的响应。 #### 2.1 长列表加载 仿微博的列表是一个包含很多组件的列表,这种复杂列表对性能的压力更大,很适合做性能测试。 从触发上拉加载到数据更新、页面渲染完成,需要准确计时。人眼视觉计时肯定不行,我们采用程序埋点的方式,制定了如下计时时机: - 计时开始时机:交互事件触发,框架赋值之前,如:上拉加载(onReachBottom)函数开头 - 计时结束时机:页面渲染完毕(微信setData回调函数开头) Tips:`setData`回调函数开头可认为是页面渲染完成的时间,是因为微信`setData`定义如下([微信规范](https://developers.weixin.qq.com/miniprogram/dev/reference/api/Page.html?search-key=Page.prototype.setData)): |字段 |类型 |必填 |描述 | |:- |:- |:- |:- | |data |Object |是 |这次要改变的数据| | |callback |Function |否 |setData引起的界面更新**渲染完毕**后的回调函数 | 测试方式:从页面空列表开始,通过程序自动触发上拉加载,每次新增20条列表,记录单次耗时;固定间隔连续触发 N 次上拉加载,使得页面达到 20*N 条列表,计算这 N 次`触发上拉 -> 渲染完成`的平均耗时。 测试结果如下: |列表条数 | 微信原生 |wepy |mpvue |taro |uni-app|chameleon | |:- |:- |:- |:- |:- |:- |:- | |200 |770 |625 |969 |752 |641 |1261 | |400 |876 |781 |4493 |974 |741 |1970 | |600 |1111 |- |- |1250 |910 |2917 | |800 |1406 |- |- |1547 |1113 |4040 | |1000 |1690 |- |- |1878 |1321 |5196 | 说明:以400条微博列表为例,从页面空列表开始,每隔1秒触发一次上拉加载(新增20条微博),记录单次耗时,触发20次后停止(页面达到400条微博),计算这20次的平均耗时,结果微信原生在这20次 `触发上拉 -> 渲染完成` 的平均耗时为876毫秒,最快的`uni-app`是741毫秒,最慢的mpvue是4493毫秒 大家初看这个数据,可能比较疑惑,别急,下方有详细说明 **说明1:为何 mpvue/wepy 测试数据不完整?** `mpvue`、`wepy` 诞生之初,微信小程序尚不支持[自定义组件](https://developers.weixin.qq.com/miniprogram/dev/framework/custom-component/),无法进行组件化开发;`mpvue`、`wepy` 为解决这个问题,将用户编写的`Vue`组件,编译为`WXML`中的[模板(template)](https://developers.weixin.qq.com/miniprogram/dev/framework/view/wxml/template.html),变相实现了组件化开发能力,提高代码复用性,这在当时的技术条件下是很棒的技术方案。 但如此方案,在复杂组件较多的页面,会大量增加 dom 节点,甚至超出微信的 dom 节点数限制。我们在 红米手机(Redmi 6 Pro)上实测,页面组件超过500个时,`mpvue`、`wepy` 实现的仿微博App就会报出如下异常,并停止渲染,故这两个测试框架在组件较多时,测试数据不完整。这也就意味着,当页面组件太多时,无法使用这2个框架。 > dom limit exceeded please check if there's any mistake you've made *Tips:`wepy`在400条列表以内,为何性能高于微信原生框架,这个跟自定义组件管理开销及业务场景有关(`wepy`编译为模板,不涉及组件创建及管理开销),后续对微博点赞,涉及组件数据传递时,微信原生框架的性能优势就提现出来了,详见下方测试数据。* **说明2:uni-app 比微信原生框架性能更好?逆天了?** 其实,在页面上有200条记录(200个组件)时,`taro` 性能数据也比微信原生框架更好。 微信原生框架耗时主要在`setData`调用上,开发者若不单独优化,则每次都会传递大量数据;而 `uni-app`、`taro` 都在调用`setData`之前自动做`diff`计算,每次仅传递有变化的数据。 例如当前页面有20条数据,触发上拉加载时,会新加载20条数据,此时原生框架通过如下代码测试时,`setData`会传输40条数据 ``` data: { listData: [] }, onReachBottom() { //上拉加载 let listData = this.data.listData; listData.push(...Api.getNews());//新增数据 this.setData({ listData }) //全量数据,发送数据到视图层 } ``` 开发者使用微信原生框架,完全可以自己优化,精简传递数据,比如修改如下: ``` data: { listData: [] }, onReachBottom() { //上拉加载 // 通过长度获取下一次渲染的索引 let index = this.data.listData.length; let newData = {}; //新变更数据 Api.getNews().forEach((item) => { newData['listData[' + (index++) + ']'] = item //赋值,索引递增 }) this.setData(newData) //增量数据,发送数据到视图层 } ``` 经过如上优化修改后,再次测试,微信原生框架性能数据如下: |组件数量 | 微信原生框架(优化前) |微信原生框架(优化后) |uni-app|taro | |:- |:- |:- |:- | |200 |770 |572 |641 | 752 | |400 |876 |688 |741 | 974 | |600 |1111 |855 |910 | 1250 | |800 |1406 |1055 |1113 | 1547 | |1000 |1690 |1260 |1321 | 1878 | 从测试结果可看出,经过开发者手动优化,微信原生框架可达到更好的性能,但 `uni-app`、`taro` 相比微信原生,性能差距并不大。 这个结果,和web开发类似,web开发也有原生js开发、vue、react框架等情况。如果不做特殊优化,原生js写的网页,性能经常还不如vue、react框架的性能。 也恰恰是因为`Vue`、`react`框架的优秀,性能好,开发体验好,所以原生js开发已经逐渐减少使用了。 复杂长列表加载下一页评测结论:`微信原生开发手工优化`,`uni-app`>`微信原生开发未手工优化`,`taro` > `chameleon` > `wepy` > `mpvue` #### 2.2 点赞组件响应速度 长列表中的某个组件,比如点赞组件,点击时是否能及时的修改未赞和已赞状态?是这项测试的评测点。 测试方式: - 选中某微博,点击“点赞”按钮,实现点赞状态状态切换(已赞高亮、未赞灰色), - 点赞按钮 `onclick`函数开头开始计时,`setData`回调函数开头结束计时; 在红米手机(Redmi 6 Pro)上进行多次测试,求其平均值,结果如下: |列表数量 |微信原生 |wepy |mpvue |taro |uni-app|chameleon | |:- |:- |:- |:- |:- |:- |:- | |200 |91 |279 |666 |92 |93 |101 | |400 |111 |501 |1507 |125 |107 |145 | |600 |144 |- |- |152 |148 |178 | |800 |176 |- |- |214 |181 |236 | |1000 |220 |- |- |229 |234 |272 | 说明:也就是在列表数量为400时,微信原生开发的应用,点赞按钮从点击到状态变化需要111毫秒。 测试结果数据说明: - wepy/mpvue 测试数据不完整的原因同上,在组件较多时,页面已经不再渲染了 - 基于微信自定义组件实现组件开发的框架(uni-app/taro/chameleon),组件数据通讯性能接近于微信原生框架,远高于基于`template`实现组件开发的框架(wepy/mpvue)性能 组件数据更新性能测评:`微信原生开发`,`uni-app`,`taro` > `chameleon` > `wepy` > `mpvue` 综上,本性能测试做了2个测试,长列表加载和组件状态更新,综合2个实验,结论如下: `微信原生开发手工优化`,`uni-app`>`微信原生开发未手工优化`,`taro` > `chameleon` >> `wepy` > `mpvue`