# csuite **Repository Path**: mirrors_deepmind/csuite ## Basic Information - **Project Name**: csuite - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-11-05 - **Last Updated**: 2025-09-21 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Continuing Environments for Reinforcement Learning (`csuite`) CSuite is a collection of carefully-curated synthetic environments for research in the continuing setting: the agent-environment interaction goes on forever without limit, with no natural episode boundaries. ## Installation Clone the source code into a local directory and install using pip: ```sh git clone https://github.com/deepmind/csuite.git /path/to/local/csuite/ pip install /path/to/local/csuite/ ``` `csuite` is not yet available from PyPI. ## Environment Interface CSuite environments adhere to the Python interface defined in `csuite/environment/base.py`. Find the interface [documentation here](https://rl-csuite.readthedocs.io/en/latest/api.html). ```python import csuite env = csuite.load("catch") action_spec = env.action_spec() observation = env.start() print("First observation:\n", observation) total_reward = 0 for _ in range(100): observation, reward = env.step(action_spec.generate_value()) total_reward += reward print("Total reward:", total_reward) ``` ### Using `csuite` with dm_env interface For a codebase that uses the [`dm_env`](https://github.com/deepmind/dm_env) interface, use the `DMEnvFromCSuite` wrapper class: ```python import csuite env = csuite.dm_env_wrapper.DMEnvFromCSuite(csuite.load("catch")) action_spec = env.action_spec() timestep = env.reset() print("First observation:\n", timestep.observation) total_reward = 0 for _ in range(100): timestep = env.step(action_spec.generate_value()) total_reward += timestep.reward print("Total reward:", total_reward) ```