# kfac-jax **Repository Path**: mirrors_deepmind/kfac-jax ## Basic Information - **Project Name**: kfac-jax - **Description**: Second Order Optimization and Curvature Estimation with K-FAC in JAX. - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-04-02 - **Last Updated**: 2025-08-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # KFAC-JAX - Second Order Optimization with Approximate Curvature in JAX [**Installation**](#installation) | [**Quickstart**](#quickstart) | [**Documentation**](https://kfac-jax.readthedocs.io/) | [**Examples**](https://github.com/google-deepmind/kfac-jax/tree/main/examples/) | [**Citing KFAC-JAX**](#citing-kfac-jax) ![CI status](https://github.com/google-deepmind/kfac-jax/workflows/ci/badge.svg) ![docs](https://readthedocs.org/projects/kfac-jax/badge/?version=latest) ![pypi](https://img.shields.io/pypi/v/kfac-jax) KFAC-JAX is a library built on top of [JAX] for second-order optimization of neural networks and for computing scalable curvature approximations. The main goal of the library is to provide researchers with an easy-to-use implementation of the [K-FAC] optimizer and curvature estimator. ## Installation KFAC-JAX is written in pure Python, but depends on C++ code via JAX. First, follow [these instructions](https://github.com/google/jax#installation) to install JAX with the relevant accelerator support. Then, install KFAC-JAX using pip: ```bash $ pip install git+https://github.com/google-deepmind/kfac-jax ``` Alternatively, you can install via PyPI: ```bash $ pip install -U kfac-jax ``` Our examples rely on additional libraries, all of which you can install using: ```bash $ pip install kfac-jax[examples] ``` ## Quickstart Let's take a look at a simple example of training a neural network, defined using [Haiku], with the K-FAC optimizer: ```python import haiku as hk import jax import jax.numpy as jnp import kfac_jax # Hyper parameters NUM_CLASSES = 10 L2_REG = 1e-3 NUM_BATCHES = 100 def make_dataset_iterator(batch_size): # Dummy dataset, in practice this should be your dataset pipeline for _ in range(NUM_BATCHES): yield jnp.zeros([batch_size, 100]), jnp.ones([batch_size], dtype="int32") def softmax_cross_entropy(logits: jnp.ndarray, targets: jnp.ndarray): """Softmax cross entropy loss.""" # We assume integer labels assert logits.ndim == targets.ndim + 1 # Tell KFAC-JAX this model represents a classifier # See https://kfac-jax.readthedocs.io/en/latest/overview.html#supported-losses kfac_jax.register_softmax_cross_entropy_loss(logits, targets) log_p = jax.nn.log_softmax(logits, axis=-1) return - jax.vmap(lambda x, y: x[y])(log_p, targets) def model_fn(x): """A Haiku MLP model function - three hidden layer network with tanh.""" return hk.nets.MLP( output_sizes=(50, 50, 50, NUM_CLASSES), with_bias=True, activation=jax.nn.tanh, )(x) # The Haiku transformed model hk_model = hk.without_apply_rng(hk.transform(model_fn)) def loss_fn(model_params, model_batch): """The loss function to optimize.""" x, y = model_batch logits = hk_model.apply(model_params, x) loss = jnp.mean(softmax_cross_entropy(logits, y)) # The optimizer assumes that the function you provide has already added # the L2 regularizer to its gradients. return loss + L2_REG * kfac_jax.utils.inner_product(params, params) / 2.0 # Create the optimizer optimizer = kfac_jax.Optimizer( value_and_grad_func=jax.value_and_grad(loss_fn), l2_reg=L2_REG, value_func_has_aux=False, value_func_has_state=False, value_func_has_rng=False, use_adaptive_learning_rate=True, use_adaptive_momentum=True, use_adaptive_damping=True, initial_damping=1.0, multi_device=False, ) input_dataset = make_dataset_iterator(128) rng = jax.random.PRNGKey(42) dummy_images, dummy_labels = next(input_dataset) rng, key = jax.random.split(rng) params = hk_model.init(key, dummy_images) rng, key = jax.random.split(rng) opt_state = optimizer.init(params, key, (dummy_images, dummy_labels)) # Training loop for i, batch in enumerate(input_dataset): rng, key = jax.random.split(rng) params, opt_state, stats = optimizer.step( params, opt_state, key, batch=batch, global_step_int=i) print(i, stats) ``` ### Do not stage (``jit`` or ``pmap``) the optimizer You should not apply `jax.jit` or `jax.pmap` to the call to `Optimizer.step`. This is already done for you automatically by the optimizer class. To control the staging behaviour of the optimizer set the flag ``multi_device`` to ``True`` for ``pmap`` and to ``False`` for ``jit``. ### Do not stage (``jit`` or ``pmap``) the loss function The ``value_and_grad_func`` argument provided to the optimizer should compute the loss function value and its gradients. Since the optimizer already stages its step function internally, applying ``jax.jit`` to ``value_and_grad_func`` is **NOT** recommended. Importantly, applying ``jax.pmap`` is **WRONG** and most likely will lead to errors. ### Registering the model loss function In order for KFAC-JAX to be able to correctly approximate the curvature matrix of the model it needs to know the precise loss function that you want to optimize. This is done via registration with certain functions provided by the library. For instance, in the example above this is done via the call to ``kfac_jax.register_softmax_cross_entropy_loss``, which tells the optimizer that the loss is the standard softmax cross-entropy. If you don't do this you will get an error when you try to call the optimizer. For all supported loss functions please read the [documentation]. ``Important:`` The optimizer assumes that the loss is averaged over examples in the minibatch. It is crucial that you follow this convention. ### Other model function options Oftentimes, one will want to output some auxiliary statistics or metrics in addition to the loss value. This can already be done in the ``value_and_grad_func``, in which case we follow the same conventions as JAX and expect the output to be ``(loss, aux), grads``. Similarly, the loss function can take an additional function state (batch norm layers usually have this) or an PRNG key (used in stochastic layers). All of these, however, need to be explicitly told to the optimizer via its arguments ``value_func_has_aux``, ``value_func_has_state`` and ``value_func_has_rng``. ### Verify optimizer registrations We strongly encourage the user to pay attention to the logging messages produced by the automatic registration system, in order to ensure that it has correctly understood your model. For the example above this looks like this: ```python ================================================== Graph parameter registrations: {'mlp/~/linear_0': {'b': 'Auto[dense_with_bias_3]', 'w': 'Auto[dense_with_bias_3]'}, 'mlp/~/linear_1': {'b': 'Auto[dense_with_bias_2]', 'w': 'Auto[dense_with_bias_2]'}, 'mlp/~/linear_2': {'b': 'Auto[dense_with_bias_1]', 'w': 'Auto[dense_with_bias_1]'}, 'mlp/~/linear_3': {'b': 'Auto[dense_with_bias_0]', 'w': 'Auto[dense_with_bias_0]'}} ================================================== ``` As can be seen from this message, the library has correctly detected all parameters of the model to be part of dense layers. ### Further reading For a high level overview of the optimizer, the different curvature approximations, and the supported layers, please see the [documentation]. ## Citing KFAC-JAX To cite this repository: ``` @software{kfac-jax2022github, author = {Aleksandar Botev and James Martens}, title = {{KFAC-JAX}}, url = {https://github.com/google-deepmind/kfac-jax}, version = {0.0.2}, year = {2022}, } ``` In this bibtex entry, the version number is intended to be from [`kfac_jax/__init__.py`](https://github.com/google-deepmind/kfac-jax/blob/main/kfac_jax/__init__.py), and the year corresponds to the project's open-source release. [K-FAC]: https://arxiv.org/abs/1503.05671 [JAX]: https://github.com/google/jax [Haiku]: https://github.com/google-deepmind/dm-haiku [documentation]: https://kfac-jax.readthedocs.io/