# mc_gradients **Repository Path**: mirrors_deepmind/mc_gradients ## Basic Information - **Project Name**: mc_gradients - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-27 - **Last Updated**: 2025-09-14 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Monte Carlo Gradient Estimation in Machine Learning This is the example code for the following paper. If you use the code here please cite this paper. > Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih *Monte Carlo Gradient Estimation in Machine Learning*. [\[arXiv\]](https://arxiv.org/abs/1906.10652). ## Running the code The code contains: * the implementation the score function, pathwise and measure valued estimators `gradient_estimators.py` and their tests to ensure unbiasedness `gradient_estimators_test.py`. * the implementation of control variates `control_variates.py` and their tests `control_variates_tests.py`. * a `main.py` file to reproduce the Bayesian Logistic regression experiments in the paper. * a `config.py` file used to configure experiments. To run the code and install the required dependencies: ``` source monte_carlo_gradients/run.sh ``` To run a test: ``` python3 -m monte_carlo_gradients.gradient_estimators_test ``` ## Colab You can run the code in the browser using [Colab](https://colab.research.google.com). The experiments from Section 3 can be reproduced using the following link: [Intuitive Analysis of Gradient Estimators](https://colab.research.google.com/github/deepmind/mc_gradients/blob/master/monte_carlo_gradients/variance_numerical_integration.ipynb) ## Disclaimer This is not an official Google product.