# scidata **Repository Path**: mirrors_elixir-nx/scidata ## Basic Information - **Project Name**: scidata - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2024-01-17 - **Last Updated**: 2024-01-20 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Scidata ## Usage Scidata currently supports the following training and test datasets: - Caltech101 - CIFAR10 - CIFAR100 - FashionMNIST - IMDb Reviews - Kuzushiji-MNIST (KMNIST) - MNIST - SQuAD - Yelp Reviews (Full and Polarity) - Iris - Wine Download or fetch datasets locally: ```elixir {train_images, train_labels} = Scidata.MNIST.download() {test_images, test_labels} = Scidata.MNIST.download_test() # Unpack train_images like... {images_binary, tensor_type, shape} = train_images ``` Most often you will convert those results to `Nx` tensors: ```elixir {train_images, train_labels} = Scidata.MNIST.download() # Normalize and batch images {images_binary, images_type, images_shape} = train_images batched_images = images_binary |> Nx.from_binary(images_type) |> Nx.reshape(images_shape) |> Nx.divide(255) |> Nx.to_batched(32) # One-hot-encode and batch labels {labels_binary, labels_type, _shape} = train_labels batchd_labels = labels_binary |> Nx.from_binary(labels_type) |> Nx.new_axis(-1) |> Nx.equal(Nx.tensor(Enum.to_list(0..9))) |> Nx.to_batched(32) ``` ## Installation ```elixir def deps do [ {:scidata, "~> 0.1.11"} ] end ``` ## Contributing PRs are encouraged! Consider using [utils](https://github.com/elixir-nx/scidata/blob/master/lib/scidata/utils.ex) to add your favorite dataset or one from [this list](https://github.com/elixir-nx/scidata/issues/16). ## License Copyright (c) 2022 Tom Rutten Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at [http://www.apache.org/licenses/LICENSE-2.0](http://www.apache.org/licenses/LICENSE-2.0) Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.