# AutoAvatar
**Repository Path**: mirrors_facebookresearch/AutoAvatar
## Basic Information
- **Project Name**: AutoAvatar
- **Description**: AutoAvatar Autoregressive Neural Fields for Dynamic Avatar Modeling
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: main
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2022-10-24
- **Last Updated**: 2025-09-27
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling
Ziqian Bai
·
Timur Bagautdinov
·
Javier Romero
.
Michael Zollhöfer
·
Ping Tan
·
Shunsuke Saito
ECCV 2022
AutoAvatar is an autoregressive approach for modeling dynamically deforming human bodies directly from raw scans without the need of precise surface registration.
## Data Preparation of DFaust
- Create "DFaust" folder under "\".
```bash
cd
mkdir DFaust
```
- Download SMPL+H parameters of DFaust from [AMASS dataset](https://amass.is.tue.mpg.de/index.html) to "\/DFaust". Unzip to get the "DFaust_67" folder.
- Download Dfaust scan data from [link](https://dfaust.is.tue.mpg.de/index.html). Here, we take subject 50002 as an example in the following steps. Unzip data to "\/DFaust/scans/50002".
- Download SMPL model from [link](https://smpl.is.tue.mpg.de/). Download SMPL meta data from [link](https://drive.google.com/drive/folders/1ZhS_0FFJ38Mj9pZrkr5HUTurCaofjLSk?usp=sharing). Move SMPL related files "basicmodel_m_lbs_10_207_0_v1.0.0.pkl", "basicModel_f_lbs_10_207_0_v1.0.0.pkl", "uv_info.npz", and "smpl_resample_idxs.npz" into "\/SMPL".
- Set up [AMASS](https://github.com/nghorbani/amass#installation) for DFaust data preprocessing. More specifically, download [SMPL+H (smplh.tar.xz)](https://mano.is.tue.mpg.de/) and unzip to "\/SMPL/smplh". Download [DMPLs (dmpls.tar.xz)](https://smpl.is.tue.mpg.de/) and unzip to "\/SMPL/dmpls".
- clone this repo to "\".
```bash
cd
git clone https://github.com/facebookresearch/AutoAvatar.git
```
- Now we should have the following folder structure:
```bash
\
├── DFaust
│ ├── DFaust_67
│ │ └── 50002
│ │ └── *.npz
│ └── scans
│ └── 50002
│ └── \
├── SMPL
│ ├── smplh
│ │ ├── female
│ │ ├── male
│ │ └── neutral
│ ├── dmpls
│ │ ├── female
│ │ ├── male
│ │ └── neutral
| └── \
└── AutoAvatar
```
## Environment Setup
- Install [Anaconda](https://www.anaconda.com/) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html). Then run the setup script.
```bash
cd AutoAvatar
conda create -n AutoAvatar python=3.8
conda activate AutoAvatar
bash setup.sh
```
- Create "external" folder and install [human_body_prior](https://github.com/nghorbani/human_body_prior) for DFaust data preprocess.
```bash
mkdir external
cd external
git clone https://github.com/nghorbani/human_body_prior.git
cd human_body_prior
python setup.py develop
```
## Data Preprocess
- Run "DFaust_generate.py" to preprocess data. Note that this may take a long time due to the mesh simplification (the open3d API mesh_o3d.simplify_quadric_decimation() in simplify_scans())! Mesh simplification is to speed up data loading during training.
```bash
cd AutoAvatar
export PYTHONPATH=/AutoAvatar
python data/DFaust_generate.py --ws_dir
```
## Train
- Run "implicit_train_dfaust.py" to train the model.
```bash
cd AutoAvatar
export PYTHONPATH=/AutoAvatar
python exps/PosedDecKNN_dPoses_dHs/implicit_train_dfaust.py --ws_dir --configs_path configs/PosedDecKNN_dPoses_dHs/AutoRegr.yaml --configs_path_rollout configs/PosedDecKNN_dPoses_dHs/AutoRegr_Rollout2.yaml
```
## Test
- Run "implicit_eval_dfaust.py" to test the model.
```bash
cd AutoAvatar
export PYTHONPATH=/AutoAvatar
python exps/PosedDecKNN_dPoses_dHs/implicit_eval_dfaust.py --ws_dir --ckpt_dir
```
## Pretrained Model
- Download pretrained model for DFaust subject 50002 from [link](https://drive.google.com/file/d/1Z3HmbXFgpTzE55Sxu4T2YkEMPA2j0Iuh/view?usp=sharing).
## Publication
If you find our code or paper useful, please consider citing:
```bibtex
@inproceedings{bai2022autoavatar,
title={AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling},
author={Bai, Ziqian and Bagautdinov, Timur and Romero, Javier and Zollh{\"o}fer, Michael and Tan, Ping and Saito, Shunsuke},
booktitle={European conference on computer vision},
year={2022},
}
```
## License
[CC-BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/legalcode).
See the [LICENSE](LICENSE) file.