# AutoAvatar **Repository Path**: mirrors_facebookresearch/AutoAvatar ## Basic Information - **Project Name**: AutoAvatar - **Description**: AutoAvatar Autoregressive Neural Fields for Dynamic Avatar Modeling - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2022-10-24 - **Last Updated**: 2025-09-27 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README

AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Ziqian Bai · Timur Bagautdinov · Javier Romero . Michael Zollhöfer · Ping Tan · Shunsuke Saito

ECCV 2022

Logo

AutoAvatar is an autoregressive approach for modeling dynamically deforming human bodies directly from raw scans without the need of precise surface registration.


Paper PDF Project Page video views

## Data Preparation of DFaust - Create "DFaust" folder under "\". ```bash cd mkdir DFaust ``` - Download SMPL+H parameters of DFaust from [AMASS dataset](https://amass.is.tue.mpg.de/index.html) to "\/DFaust". Unzip to get the "DFaust_67" folder. - Download Dfaust scan data from [link](https://dfaust.is.tue.mpg.de/index.html). Here, we take subject 50002 as an example in the following steps. Unzip data to "\/DFaust/scans/50002". - Download SMPL model from [link](https://smpl.is.tue.mpg.de/). Download SMPL meta data from [link](https://drive.google.com/drive/folders/1ZhS_0FFJ38Mj9pZrkr5HUTurCaofjLSk?usp=sharing). Move SMPL related files "basicmodel_m_lbs_10_207_0_v1.0.0.pkl", "basicModel_f_lbs_10_207_0_v1.0.0.pkl", "uv_info.npz", and "smpl_resample_idxs.npz" into "\/SMPL". - Set up [AMASS](https://github.com/nghorbani/amass#installation) for DFaust data preprocessing. More specifically, download [SMPL+H (smplh.tar.xz)](https://mano.is.tue.mpg.de/) and unzip to "\/SMPL/smplh". Download [DMPLs (dmpls.tar.xz)](https://smpl.is.tue.mpg.de/) and unzip to "\/SMPL/dmpls". - clone this repo to "\". ```bash cd git clone https://github.com/facebookresearch/AutoAvatar.git ``` - Now we should have the following folder structure: ```bash \ ├── DFaust │ ├── DFaust_67 │ │ └── 50002 │ │ └── *.npz │ └── scans │ └── 50002 │ └── \ ├── SMPL │ ├── smplh │ │ ├── female │ │ ├── male │ │ └── neutral │ ├── dmpls │ │ ├── female │ │ ├── male │ │ └── neutral | └── \ └── AutoAvatar ``` ## Environment Setup - Install [Anaconda](https://www.anaconda.com/) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html). Then run the setup script. ```bash cd AutoAvatar conda create -n AutoAvatar python=3.8 conda activate AutoAvatar bash setup.sh ``` - Create "external" folder and install [human_body_prior](https://github.com/nghorbani/human_body_prior) for DFaust data preprocess. ```bash mkdir external cd external git clone https://github.com/nghorbani/human_body_prior.git cd human_body_prior python setup.py develop ``` ## Data Preprocess - Run "DFaust_generate.py" to preprocess data. Note that this may take a long time due to the mesh simplification (the open3d API mesh_o3d.simplify_quadric_decimation() in simplify_scans())! Mesh simplification is to speed up data loading during training. ```bash cd AutoAvatar export PYTHONPATH=/AutoAvatar python data/DFaust_generate.py --ws_dir ``` ## Train - Run "implicit_train_dfaust.py" to train the model. ```bash cd AutoAvatar export PYTHONPATH=/AutoAvatar python exps/PosedDecKNN_dPoses_dHs/implicit_train_dfaust.py --ws_dir --configs_path configs/PosedDecKNN_dPoses_dHs/AutoRegr.yaml --configs_path_rollout configs/PosedDecKNN_dPoses_dHs/AutoRegr_Rollout2.yaml ``` ## Test - Run "implicit_eval_dfaust.py" to test the model. ```bash cd AutoAvatar export PYTHONPATH=/AutoAvatar python exps/PosedDecKNN_dPoses_dHs/implicit_eval_dfaust.py --ws_dir --ckpt_dir ``` ## Pretrained Model - Download pretrained model for DFaust subject 50002 from [link](https://drive.google.com/file/d/1Z3HmbXFgpTzE55Sxu4T2YkEMPA2j0Iuh/view?usp=sharing). ## Publication If you find our code or paper useful, please consider citing: ```bibtex @inproceedings{bai2022autoavatar, title={AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling}, author={Bai, Ziqian and Bagautdinov, Timur and Romero, Javier and Zollh{\"o}fer, Michael and Tan, Ping and Saito, Shunsuke}, booktitle={European conference on computer vision}, year={2022}, } ``` ## License [CC-BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/legalcode). See the [LICENSE](LICENSE) file.