# relay-policy-learning **Repository Path**: mirrors_google-research/relay-policy-learning ## Basic Information - **Project Name**: relay-policy-learning - **Description**: No description available - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-24 - **Last Updated**: 2025-11-29 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Relay Policy Learning Environments This is a set of environments and associated data for use with MuJoCo in a kitchen simulator. The code instantiates a kitchen environment and parses associated demonstrations. ## Getting Started (User) 1. Clone the repository ``` $ git clone https://github.com/google-research/relay-policy-learning ``` 2. Use the environments in your code (After including in the PYTHONPATH) ``` #!/usr/bin/env python3 import adept_envs import gym env = gym.make('kitchen_relax-v1') ``` 3. To use the demos, first clone the puppet VR repository and add PATH/TO/puppet/vive/source to the PYTHONPATH ``` $ git clone https://github.com/vikashplus/puppet ``` 4. Use parse_demos to parse the data into pkl format. Unzip the kitchen_demos_multitask.zip and then run ``` $ MJPL python adept_envs/utils/parse_demos.py --env kitchen_relax-v1 --demo_dir --view playback --skip 40 --render offscreen ``` This is not an officially supported Google product