# BEGAN-tensorflow
**Repository Path**: mirrors_lepy/BEGAN-tensorflow
## Basic Information
- **Project Name**: BEGAN-tensorflow
- **Description**: Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"
- **Primary Language**: Unknown
- **License**: Not specified
- **Default Branch**: master
- **Homepage**: None
- **GVP Project**: No
## Statistics
- **Stars**: 0
- **Forks**: 0
- **Created**: 2020-09-25
- **Last Updated**: 2025-07-26
## Categories & Tags
**Categories**: Uncategorized
**Tags**: None
## README
# BEGAN in Tensorflow
Tensorflow implementation of [BEGAN: Boundary Equilibrium Generative Adversarial Networks](https://arxiv.org/abs/1703.10717).

## Requirements
- Python 2.7
- [Pillow](https://pillow.readthedocs.io/en/4.0.x/)
- [tqdm](https://github.com/tqdm/tqdm)
- [TensorFlow 1.1.0](https://github.com/tensorflow/tensorflow) (**Need nightly build** which can be found in [here](https://github.com/tensorflow/tensorflow#installation))
- [requests](https://github.com/kennethreitz/requests) (Only used for downloading CelebA dataset)
## Usage
First download [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) datasets with:
$ apt-get install p7zip-full # ubuntu
$ brew install p7zip # Mac
$ python download.py
or you can use your own dataset by placing images like:
data
└── YOUR_DATASET_NAME
├── xxx.jpg (name doesn't matter)
├── yyy.jpg
└── ...
To train a model:
$ python main.py --dataset=CelebA --use_gpu=True
$ python main.py --dataset=YOUR_DATASET_NAME --use_gpu=True
To test a model (use your `load_path`):
$ python main.py --dataset=CelebA --load_path=./logs/CelebA_0405_124806 --use_gpu=True --is_train=False --split valid
## Results
- [BEGAN-tensorflow](https://github.com/carpedm20/began-tensorflow) at least can generate human faces but [BEGAN-pytorch](https://github.com/carpedm20/BEGAN-pytorch) can't.
- Both [BEGAN-tensorflow](https://github.com/carpedm20/began-tensorflow) and [BEGAN-pytorch](https://github.com/carpedm20/BEGAN-pytorch) shows **modal collapses** and I guess this is due to a wrong scheuduling of lr (Paper mentioned that *simply reducing the lr was sufficient to avoid them*).
- Still couldn't reach the quality of paper's result and have some issue [#1](https://github.com/carpedm20/BEGAN-tensorflow/issues/1).
### Generator outputs (after 82400 step)
### Generator and Discriminator outputs (after 104000 step)
(in progress)
## Author
Taehoon Kim / [@carpedm20](http://carpedm20.github.io)