# BEGAN-tensorflow **Repository Path**: mirrors_lepy/BEGAN-tensorflow ## Basic Information - **Project Name**: BEGAN-tensorflow - **Description**: Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # BEGAN in Tensorflow Tensorflow implementation of [BEGAN: Boundary Equilibrium Generative Adversarial Networks](https://arxiv.org/abs/1703.10717). ![alt tag](./assets/model.png) ## Requirements - Python 2.7 - [Pillow](https://pillow.readthedocs.io/en/4.0.x/) - [tqdm](https://github.com/tqdm/tqdm) - [TensorFlow 1.1.0](https://github.com/tensorflow/tensorflow) (**Need nightly build** which can be found in [here](https://github.com/tensorflow/tensorflow#installation)) - [requests](https://github.com/kennethreitz/requests) (Only used for downloading CelebA dataset) ## Usage First download [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) datasets with: $ apt-get install p7zip-full # ubuntu $ brew install p7zip # Mac $ python download.py or you can use your own dataset by placing images like: data └── YOUR_DATASET_NAME ├── xxx.jpg (name doesn't matter) ├── yyy.jpg └── ... To train a model: $ python main.py --dataset=CelebA --use_gpu=True $ python main.py --dataset=YOUR_DATASET_NAME --use_gpu=True To test a model (use your `load_path`): $ python main.py --dataset=CelebA --load_path=./logs/CelebA_0405_124806 --use_gpu=True --is_train=False --split valid ## Results - [BEGAN-tensorflow](https://github.com/carpedm20/began-tensorflow) at least can generate human faces but [BEGAN-pytorch](https://github.com/carpedm20/BEGAN-pytorch) can't. - Both [BEGAN-tensorflow](https://github.com/carpedm20/began-tensorflow) and [BEGAN-pytorch](https://github.com/carpedm20/BEGAN-pytorch) shows **modal collapses** and I guess this is due to a wrong scheuduling of lr (Paper mentioned that *simply reducing the lr was sufficient to avoid them*). - Still couldn't reach the quality of paper's result and have some issue [#1](https://github.com/carpedm20/BEGAN-tensorflow/issues/1). ### Generator outputs (after 82400 step) ### Generator and Discriminator outputs (after 104000 step) (in progress) ## Author Taehoon Kim / [@carpedm20](http://carpedm20.github.io)