# CGNN **Repository Path**: mirrors_lepy/CGNN ## Basic Information - **Project Name**: CGNN - **Description**: Replication code for the article "Learning Functional Causal Models with Generative Neural Networks" - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-02-24 - **Last Updated**: 2025-07-26 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Tensorflow Implementation of the CGNN Code provided to reproduce the results from the article "Learning Functional Causal Models with Generative Neural Networks" Requirements: numpy scipy scikit-learn tensorflow joblib pandas ### In order to run the CGNN and launch the experiments: 1) First install the CGNN package. Enter in the code directory. Run the command line "python setup.py install develop --user" 2) Launch the example python script for pairwise inference: "python run_GNN_pairwise_inference.py" 3) Launch the example python script for graph reconstruction from a skeleton: "python run_CGNN_graph.py" 4) Launch the example python script for graph reconstruction in presence of hidden variables: "python run_CGNN_graph_hidden_variables.py" 5) The complete datasets used in the article may be found at the following url: - pairwise datasets : http://dx.doi.org/10.7910/DVN/3757KX - graph datasets : http://dx.doi.org/10.7910/DVN/UZMB69 # Fast Pytorch implementation of CGNN available in the CDT A faster implementation of CGNN in pytorch in available in the CausalDiscoveryToolBox (CDT) https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox arXiv paper of the CDT: https://arxiv.org/abs/1903.02278