# PyProcess **Repository Path**: mirrors_lepy/PyProcess ## Basic Information - **Project Name**: PyProcess - **Description**: Generate stochastic processes using Python. Unfortunately not maintained any longer =( - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-08-09 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README PyProcess 0.2 ============= PyProcess is a Python class library used to exactly simulate stochastic processes, and their properties. Using this library, you can simulate the following random processes: Continuous Diffusions - Brownian Motion - Geometric Brownian Motion - CEV - CIR - Square Bessel Process - Ornstein Uhlenbeck process - Time-integrated Ornstein Uhlenbeck process - Levy Processes - Bessel Process (coming soon) - Fractional Brownian Motion (coming soon) Jump Diffusions - Gamma process - Variance-gamma process - Geometric Gamma process - Inverse Gaussian process *NEW* - Normal Inverse Gaussian process *NEW* Step Processes - Renewal process - Poisson process - Compound poisson process - marked-poisson process - Fractional poisson process (coming soon) *See fun examples of the processes you can simulate [here] (http://pyprocess.70percentfatfree.com)* Simulation Algorithms + PyProcess 0.2 ------------------------------------- See the report for [PyProcess 0.2's background.](http://www.camdp.com/mediaFiles/PDFs/PyProcess.pdf) Lastly ----------------- Visit me at [camdp.com](http://www.camdp.com) or at [@cmrn_dp](http://twitter.com/cmrn_dp)