# PySyft **Repository Path**: mirrors_lepy/PySyft ## Basic Information - **Project Name**: PySyft - **Description**: A library for encrypted, privacy preserving deep learning - **Primary Language**: Unknown - **License**: Apache-2.0 - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-09-25 - **Last Updated**: 2025-07-02 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Introduction [![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/OpenMined/PySyft/master) [![Build Status](https://travis-ci.org/OpenMined/PySyft.svg?branch=master)](https://travis-ci.org/OpenMined/PySyft) [![Chat on Slack](https://img.shields.io/badge/chat-on%20slack-7A5979.svg)](https://openmined.slack.com/messages/team_pysyft) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=small)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_small) PySyft is a Python library for secure, private Deep Learning. PySyft decouples private data from model training, using [Multi-Party Computation \(MPC\)](https://en.wikipedia.org/wiki/Secure_multi-party_computation) within PyTorch. View the paper on [Arxiv](https://arxiv.org/abs/1811.04017). Join the movement on [Slack](http://slack.openmined.org/). ## See PySyft in Action * [Emulate remote PyTorch execution](https://colab.research.google.com/drive/1vsgH0ydHyel5VRAxO2yhRQfXYUuIYkp5) - This notebook demonstrates the tensor passing between workers, though both the workers live in the same environment. * Emulate remote PyTorch execution using sockets: [Server](https://colab.research.google.com/drive/1-Jb_E_nDuBGHIJ_psI95k-ukh-P_aly-#scrollTo=lrcghOJOWGHw) \| [Client](https://colab.research.google.com/drive/1Je1rk7olA9uTWWaqvvt4_gXf7yX1rTBm) - This notebook demonstrates the tensor passing and remote execution, with workers living in different environments. > Note: Run Server before Client * [Federated Learning](https://colab.research.google.com/drive/1F3ALlA3ogfeeVXuwQwVoX4PimzTDJhPy#scrollTo=PTCvX6H9JDCt) - This notebook demonstrates the model training over distributed data \(data belonging to multiple owners\). ## Docker ```bash git clone https://github.com/OpenMined/PySyft.git cd PySyft scripts/run_docker.sh ``` > Image size: 644MB The container mount the examples folder on a volume so every change on the notebooks is persistent. Furthermore the container is deleted when it is stopped, in a way to facilitate development. You just have to change PySyft code, and run the run\_docker.sh script to observe changes you've made on notebooks. ## Installation > PySyft supports Python >= 3.6 and PyTorch 0.3.1 Pick the proper PyTorch version according to your machine: [CPU](http://download.pytorch.org/whl/cpu/torch-0.3.1-cp36-cp36m-linux_x86_64.whl) \| [CUDA9.1](http://download.pytorch.org/whl/cu91/torch-0.3.1-cp36-cp36m-linux_x86_64.whl) \| [CUDA9.0](http://download.pytorch.org/whl/cu90/torch-0.3.1-cp36-cp36m-linux_x86_64.whl) \| [CUDA8.0](http://download.pytorch.org/whl/cu80/torch-0.3.1-cp36-cp36m-linux_x86_64.whl) ```bash conda install pytorch=0.3.1 -c soumith pip3 install -r requirements.txt python3 setup.py install ``` On Windows use the following steps to install PyTorch 0.3.1- ```text conda install -c peterjc123 pytorch conda install -c peterjc123 pytorch-cpu ``` ## Run Unit Tests ```text python3 setup.py test ``` Alternatively, tests can be run with ```bash make test ``` ## Run Local Notebook Server All the examples can be played with by running the command ```bash make notebook ``` and selecting the pysyft kernel Join the rapidly growing community of 2500+ on [Slack](http://slack.openmined.org) and help us in our mission. We are really friendly people! ## Organizational Contributions We are very grateful for contributions to PySyft from the following organizations! [coMind Website](https://comind.org/) & [coMind Github](https://github.com/coMindOrg/federated-averaging-tutorials) ## Disclaimer Do NOT use this code to protect data (private or otherwise) - at present it is very insecure. ## License [Apache License 2.0](https://github.com/OpenMined/PySyft/blob/master/LICENSE) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft.svg?type=large)](https://app.fossa.io/projects/git%2Bgithub.com%2Fmatthew-mcateer%2FPySyft?ref=badge_large)