# Streamlit_DataScience_Apps **Repository Path**: mirrors_lepy/Streamlit_DataScience_Apps ## Basic Information - **Project Name**: Streamlit_DataScience_Apps - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2021-01-30 - **Last Updated**: 2023-08-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README ## Streamlit_DataScience_Apps Streamlit Data Science and ML Apps in Python ### How to Deploy Streamlit Apps to Heroku #### 1. Create An Account Heroku by signing up. #### 2. Install Heroku CLI #### 3. Create Your Github Repository for your app #### 4. Build your app #### 5. Login to Heroku From the CLI ```sh heroku Login ``` #### 6. Create Your 3 Required Files(setup.sh,Procfile,requirements.txt) + Place the code below in their respective files ##### Code for setup.sh ```sh mkdir -p ~/.streamlit/ echo "\ [general]\n\ email = \"your-email@domain.com\"\n\ " > ~/.streamlit/credentials.toml echo "\ [server]\n\ headless = true\n\ enableCORS=false\n\ port = $PORT\n\ " > ~/.streamlit/config.toml ``` ##### Code for setup.sh (Alternate with no credentials.toml) ```sh mkdir -p ~/.streamlit/ echo "\ [server]\n\ headless = true\n\ port = $PORT\n\ enableCORS = false\n\ \n\ " > ~/.streamlit/config.toml ``` ##### Code For Procfile ```sh web: sh setup.sh && streamlit run your_app.py ``` #### 7. Create App with CLI ```sh heroku create name-of-your-app ``` #### 8. Commit and Push Your Code to Github ```sh git add your app git commit -m "your comment description" git push ``` #### 9. Push To Heroku to Deploy ```sh git push heroku master ``` #### Credits: [gabe_maldonado](https://discuss.streamlit.io/u/gabe_maldonado) [Streamlit team](https://streamlit.io/) #### Thanks For Your Time ####By + Jesse E.Agbe(JCharis) + Jesus Saves@JCharisTech